[1]周晶雨,王士同.对不平衡目标域的多源在线迁移学习[J].智能系统学报,2022,17(2):248-256.[doi:10.11992/tis.202012019]
 ZHOU Jingyu,WANG Shitong.Multi-source online transfer learning for imbalanced target domains[J].CAAI Transactions on Intelligent Systems,2022,17(2):248-256.[doi:10.11992/tis.202012019]
点击复制

对不平衡目标域的多源在线迁移学习

参考文献/References:
[1] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345–1359.
[2] EATON E, DESJARDINS M. Selective transfer between learning tasks using task-based boosting[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. San Francisco, USA, 2011.
[3] DREDZE M, KULESZA A, CRAMMER K. Multi-domain learning by confidence-weighted parameter combination[J]. Machine learning, 2010, 79(1/2): 123–149.
[4] QIAN Qi, ZHU Shenghuo, TANG Jiasheng, et al. Robust optimization over multiple domains[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Hawaii, USA, 2019: 4739-4746.
[5] HOFFMAN J, MOHRI M, ZHANG Ningshan. Algorithms and theory for multiple-source adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada, 2018.
[6] PENG Xingchao, BAI Qinxun, XIA Xide, et al. Moment matching for multi-source domain adaptation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019.
[7] KANG Zhongfeng, YANG Bo, YANG Shantian, et al. Online transfer learning with multiple source domains for multi-class classification[J]. Knowledge-based systems, 2020, 190: 105149.
[8] XIANG E W, PAN S J, PAN Weike, et al. Source-selection-free transfer learning[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Barcelona, Spain, 2011: 2355.
[9] GENTILE C. A new approximate maximal margin classification algorithm[J]. Journal of machine learning research, 2001, 2: 213–242.
[10] CRAMMER K, DREDZE M, PEREIRA F. Confidence-weighted linear classification for text categorization[J]. The journal of machine learning research, 2012, 13(1): 1891–1926.
[11] 王晓初, 包芳, 王士同, 等. 基于最小最大概率机的迁移学习分类算法[J]. 智能系统学报, 2016, 11(1): 84–92
WANG Xiaochu, BAO Fang, WANG Shitong, et al. Transfer learning classification algorithms based on minimax probability machine[J]. CAAI transactions on intelligent systems, 2016, 11(1): 84–92
[12] ZHAO Peilin, HOI S C H. OTL: a framework of online transfer learning[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010.
[13] WU Qingyao, WU Hanrui, ZHOU Xiaoming, et al. Online transfer learning with multiple homogeneous or heterogeneous sources[J]. IEEE transactions on knowledge and data engineering, 2017, 29(7): 1494–1507.
[14] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321–357.
[15] 左鹏玉, 周洁, 王士同. 面对类别不平衡的增量在线序列极限学习机[J]. 智能系统学报, 2020, 15(3): 520–527
ZUO Pengyu, ZHOU Jie, WANG Shitong. Incremental online sequential extreme learning machine for imbalanced data[J]. CAAI transactions on intelligent systems, 2020, 15(3): 520–527
[16] MATHEW J, PANG C K, LUO Ming, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE transactions on neural networks and learning systems, 2017, 29(9): 4065–4076.
[17] CRAMMER K, DEKEL O, KESHET J, et al. Online passive-aggressive algorithms[J]. The journal of machine learning research, 2006, 7: 551–585.
[18] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 5385-5394.
[19] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010: 213-226.
相似文献/References:
[1]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86.
 FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2():86.
[2]易磊,潘志松,邱俊洋,等.在线学习的大规模网络流量分类研究[J].智能系统学报,2016,11(3):318.[doi:10.11992/tis.201603033]
 YI Lei,PAN Zhisong,QIU Junyang,et al.Large-scale network traffic classification based on online learning[J].CAAI Transactions on Intelligent Systems,2016,11():318.[doi:10.11992/tis.201603033]
[3]栾寻,高尉.优化AUC两遍学习算法[J].智能系统学报,2018,13(3):395.[doi:10.11992/tis.201706079]
 LUAN Xun,GAO Wei.Two-pass AUC optimization[J].CAAI Transactions on Intelligent Systems,2018,13():395.[doi:10.11992/tis.201706079]
[4]左鹏玉,周洁,王士同.面对类别不平衡的增量在线序列极限学习机[J].智能系统学报,2020,15(3):520.[doi:10.11992/tis.201904040]
 ZUO Pengyu,ZHOU Jie,WANG Shitong.Incremental online sequential extreme learning machine for imbalanced data[J].CAAI Transactions on Intelligent Systems,2020,15():520.[doi:10.11992/tis.201904040]

备注/Memo

收稿日期:2020-12-16。
基金项目:国家自然科学基金项目(61572236)
作者简介:周晶雨,硕士研究生,主要研究方向为人工智能、模式识别;王士同,教授,博士生导师,主要研究方向为人工智能与模式识别。发表学术论文近百篇
通讯作者:王士同.E-mail:wxwangst@aliyun.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com