[1]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073-1080.[doi:10.11992/tis.202012010]
 JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16(6):1073-1080.[doi:10.11992/tis.202012010]
点击复制

基于生成对抗网络的人脸口罩图像合成

参考文献/References:
[1] 国家卫生健康委员会.新型冠状病毒肺炎诊疗方案(试行第八版)[EB/OL].(2020-08-18)[2020-12-08]http://www.gov.cn/zhengce/zhengceku/2020-08/19/content_5535757.htm.
National Health Commission of the People’s Republic of China. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 8) [EB/OL].(2020-08-18)[2020-12-01]http://www.gov.cn/zhengce/zhengceku/2020-08/19/content_5535757.htm.
[2] TAIGMAN Y, YANG Ming, RANZATO M A, et al. DeepFace: closing the gap to human-level performance in face verification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 1701-1708.
[3] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 815-823.
[4] 李小薪, 梁荣华. 有遮挡人脸识别综述: 从子空间回归到深度学习[J]. 计算机学报, 2018, 41(1): 177-207
LI Xiaoxin, LIANG Ronghua. A review for face recognition with occlusion: from subspace regression to deep learning[J]. Chinese journal of computers, 2018, 41(1): 177-207
[5] ANWAR A, RAYCHOWDHURY A. Masked face recognition for secure authentication[EB/OL].(2020-08-25)[2020-12-01] https://arxiv.org/abs/2008.11104.
[6] CABANI A, HAMMOUNDI K, BENHABILES H, et al. Masked-Face-Net—a dataset of correctly/incorrectly masked face images in the context of covid-19[EB/OL].(2020-08-18)[2020-12-01] https://arxiv.org/abs/2008.08016.
[7] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[8] 胡铭菲,刘建伟,左信.深度生成模型综述[EB/OL].(2021-10-28)[2021-10-30] https://doi.org/10.16383/j.aas.c190866.
HU Mingfei, LIU Jianwei, ZUO Xin. Survey on deep generative model[EB/OL].(2021-10-28)[2021-10-30] https://doi.org/10.16383/j.aas.c190866.
[9] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL].(2014-11-06)[2020-12-01]https://arxiv.org/abs/1411.1784.
[10] RADFORD A, METZ L, CHINTALA S. Unsupervised repress-enttation learning with deep convolutional generative adversarial networks[EB/OL]. (2016-01-07)[2020-12-01] https://arxiv.org/abs/1511.06434.
[11] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN [EB/OL].(2017-12-06)[2020-12-01] https://arxiv.org/abs/1701.07875.
[12] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 5769-5779.
[13] WU Jiqing, HUANG Zhiwu, THOMA J, et al. Wasserstein divergence for GANs[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany, 2018: 673-688.
[14] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 2017-2025.
[15] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1-9.
[16] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251
[17] DUTA I C, LIU L, ZHU F, et al. Pyramidal convolutio-n: rethinking convolutional neural networks for vis-ual recognition[EB/OL].(2020-06-20)[2020-12-01]https://arxiv.org/abs/2006.11538.
[18] ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL]. (2017-01-17)[2020-12-01] https://arxiv.org/abs/1701.04862.
[19] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[C]//6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[20] WANG Z, WANG G, HUANG B, et al. Masked face re-cognition dataset and application[EB/OL].(2020-03-23)[2020-12-01] https://arxiv.org/abs/2003.09093.
[21] LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 3730-3738.
[22] HAN Xintong, WU Zuxuan, WU Zhe, et al. VITON: an image-based virtual try-on network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7543-7552.
[23] HAN Xintong, WU Zuxuan, HUANG Weilin, et al. Compatible and diverse fashion image inpainting[EB/OL]. (2019-04-24)[2020-12-01] https://arxiv.org/abs/1902.01096.
[24] PANDEY N, SAVAKIS A. Poly-GAN: multi-conditioned GAN for fashion synthesis[J]. Neurocomputing, 2020, 414: 356-364.
[25] DONG Haoye, LIANG Xiaodan, SHEN Xiaohui, et al. Towards multi-pose guided virtual try-on network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019: 9025-9034.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[11]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33.[doi:10.11992/tis.201908015]
 ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15():33.[doi:10.11992/tis.201908015]
[12]毕晓君,潘梦迪.基于生成对抗网络的机载遥感图像超分辨率重建[J].智能系统学报,2020,15(1):74.[doi:10.11992/tis.202002002]
 BI Xiaojun,PAN Mengdi.Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():74.[doi:10.11992/tis.202002002]
[13]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():296.[doi:10.11992/tis.201901004]
[14]张冀,曹艺,王亚茹,等.融合VAE和StackGAN的零样本图像分类方法[J].智能系统学报,2022,17(3):593.[doi:10.11992/tis.202107012]
 ZHANG Ji,CAO Yi,WANG Yaru,et al.Zero-shot image classification method combining VAE and StackGAN[J].CAAI Transactions on Intelligent Systems,2022,17():593.[doi:10.11992/tis.202107012]
[15]翟永杰,张智柏,王亚茹.基于改进TransGAN的零样本图像识别方法[J].智能系统学报,2023,18(2):352.[doi:10.11992/tis.202111002]
 ZHAI Yongjie,ZHANG Zhibai,WANG Yaru.An image recognition method of zero -shot learning based on an improved TransGAN[J].CAAI Transactions on Intelligent Systems,2023,18():352.[doi:10.11992/tis.202111002]
[16]卢娟,陈纯毅.融合递归自编解码器的蒙卡画面重构降噪方法[J].智能系统学报,2023,18(3):459.[doi:10.11992/tis.202112011]
 LU Juan,CHEN Chunyi.A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction[J].CAAI Transactions on Intelligent Systems,2023,18():459.[doi:10.11992/tis.202112011]
[17]管凤旭,路斯棋,郑岩.多尺度特征融合的双判别器残差生成对抗网络[J].智能系统学报,2023,18(5):917.[doi:10.11992/tis.202207005]
 GUAN Fengxu,LU Siqi,ZHENG Yan.Dual discriminator residual generation adversarial network with multiscale feature fusion[J].CAAI Transactions on Intelligent Systems,2023,18():917.[doi:10.11992/tis.202207005]

备注/Memo

收稿日期:2020-12-03。
基金项目:国家自然科学基金项目(61601149);黑龙江省科学基金项目(QC2017074);黑龙江省普通本科高等学校青年创新人才培养计划项目(UNPYSCT-2018199)
作者简介:姜义,讲师,主要研究方向为人工智能、传感器网络、分布式系统;吕荣镇,硕士研究生,主要研究方向为人工智能;刘明珠,副教授,主要研究方向为通信与信息系统。发表学术论文10余篇
通讯作者:姜义.E-mail:jasonj@hrbust.edu.cn

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com