[1]徐玮,郑豪,杨种学.基于双注意力模型和迁移学习的Apex帧微表情识别[J].智能系统学报,2021,16(6):1015-1020.[doi:10.11992/tis.202010031]
 XU Wei,ZHENG Hao,YANG Zhongxue.Apex frame microexpression recognition based on dual attention model and transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16(6):1015-1020.[doi:10.11992/tis.202010031]
点击复制

基于双注意力模型和迁移学习的Apex帧微表情识别

参考文献/References:
[1] SHEN Xunbing, WU Qi, FU Xiaolan. Effects of the duration of expressions on the recognition of microexpressions[J]. Journal of Zhejiang University SCIENCE B, 2012, 13(3): 221-230.
[2] ZHAO Guoying, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 915-928.
[3] WANG Yandan, SEE J, PHAN R C W, et al. LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition[C]//Proceedings of the 12th Asian Conference on Computer Vision. Singapore, Singapore, 2014: 525-537.
[4] 卢官明, 杨成, 杨文娟, 等. 基于LBP-TOP特征的微表情识别[J]. 南京邮电大学学报(自然科学版), 2017, 37(6): 1-7
LU Guanming, YANG Cheng, YANG Wenjuan, et al. Micro-expression recognition based on LBP-TOP features[J]. Journal of Nanjing University of Posts and Telecommunications (natural science edition), 2017, 37(6): 1-7
[5] WANG Sujing, YAN Wenjing, LI Xiaobai, et al. Micro-expression recognition using dynamic textures on tensor independent color space[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden, 2014: 4678-4683.
[6] WANG Sujing, YAN Wenjing, LI Xiaobai, et al. Micro-expression recognition using color spaces[J]. IEEE transactions on image processing, 2015, 24(12): 6034-6047.
[7] XU Feng, ZHANG Junping, WANG J Z. Microexpression identification and categorization using a facial dynamics map[J]. IEEE transactions on affective computing, 2017, 8(2): 254-267.
[8] LIU Yongjin, ZHANG Jinkai, YAN Wenjing, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE transactions on affective computing, 2016, 7(4): 299-310.
[9] 张轩阁, 田彦涛, 郭艳君, 等. 基于光流与LBP-TOP特征结合的微表情识别[J]. 吉林大学学报(信息科学版), 2015, 33(5): 516-523
ZHANG Xuange, TIAN Yantao, GUO Yanjun, et al. Micro-Expression recognition based on feature combination of optical flow and LBP-TOP[J]. Journal of Jilin University (information science edition), 2015, 33(5): 516-523
[10] OH Y H, LE NGO A C, SEE J, et al. Monogenic Riesz wavelet representation for micro-expression recognition[C]//Proceedings of 2015 IEEE International Conference on Digital Signal Processing. Singapore, Singapore, 2015: 1237-1241.
[11] WU Qi, SHEN Xunbing, FU Xiaolan. The machine knows what you are hiding: an automatic micro-expression recognition system[C]//Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction. Memphis, TN, USA, 2011: 152-162.
[12] ZHANG Peng, BEN Xianye, YAN Rui, et al. Micro-expression recognition system[J]. Optik, 2016, 127(3): 1395-1400.
[13] PATEL D, HONG Xiaopeng, ZHAO Guoying. Selective deep features for micro-expression recognition[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Cancun, Mexico, 2016: 2258-2263.
[14] PENG Min, WANG Chongyang, CHEN Tong, et al. Dual temporal scale convolutional neural network for micro-expression recognition[J]. Frontiers in psychology, 2017, 8: 1745.
[15] VERMA M, VIPPARTHI S K, SINGH G, et al. LEARNet: dynamic imaging network for micro expression recognition[J]. IEEE transactions on image processing, 2019, 29: 1618-1627.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 3-19.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2980-2988.
[19] LIONG S T, SEE J, WONG K S, et al. Less is more: micro-expression recognition from video using apex frame[J]. Signal processing: image communication, 2018, 62: 82-92.
[20] GAN Y S, LIONG S T, YAU W C, et al. OFF-ApexNet on micro-expression recognition system[J]. Signal processing: image communication, 2019, 74: 129-139.
[21] YAN Wenjing, LI Xiaobai, WANG Sujing, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS One, 2014, 9(1): e86041.
[22] LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Francisco, CA, USA, 2010: 94-101.
[23] LIONG S T, SEE J, PHAN R C W, et al. Subtle expression recognition using optical strain weighted features[C]//Proceedings of the Asian Conference on Computer Vision. Singapore, Singapore, 2014: 644-657.
[24] 孔慧芳, 钱世超, 闫嘉鹏. 基于不均衡数据与迁移学习的面部微表情识别[J]. 合肥工业大学学报(自然科学版), 2020, 43(7): 895-900
KONG Huifang, QIAN Shichao, YAN Jiapeng. Image based facial micro-expression recognition using transfer learning on imbalanced data[J]. Journal of Hefei University of Technology (natural science edition), 2020, 43(7): 895-900
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2020-10-26。
基金项目:国家自然科学基金项目(61976118).
作者简介:徐玮,硕士研究生,主要研究方向为机器学习、微表情识别;郑豪,教授,南京晓庄学院信息工程学院副院长,主要研究方向为人工智能、模式识别。主持及参与国家、省级科学基金项目10余项。发表学术论文30余篇;杨种学,教授,南京晓庄学院副校长,主要研究方向为人工智能、机器学习。发表学术论文10余篇.
通讯作者:郑豪.E-mail:zhh710@163.com

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com