[1]孙海霞.基于对象变化的邻域决策粗糙集动态更新算法[J].智能系统学报,2021,16(4):746-756.[doi:10.11992/tis.202010028]
SUN Haixia.Dynamic updating algorithm of neighborhood decision-theoretic rough set model based on object change[J].CAAI Transactions on Intelligent Systems,2021,16(4):746-756.[doi:10.11992/tis.202010028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第4期
页码:
746-756
栏目:
学术论文—知识工程
出版日期:
2021-07-05
- Title:
-
Dynamic updating algorithm of neighborhood decision-theoretic rough set model based on object change
- 作者:
-
孙海霞
-
安徽三联学院 计算机工程学院,安徽 合肥 230601
- Author(s):
-
SUN Haixia
-
College of Computer Engineering, Anhui Sanlian University, Hefei 230601, China
-
- 关键词:
-
粗糙集; 决策粗糙集; 邻域; 增量式学习; 近似集; 对象; 迭代; 动态
- Keywords:
-
rough set; decision-theoretic rough set; neighborhood; incremental learning; approximation set; object; iteration; dynamic
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202010028
- 摘要:
-
针对现实环境下数据集不断动态变化的特性,提出一种邻域决策粗糙集模型的增量式更新算法。采用由简单到复杂的研究思路,分析了邻域型信息系统论域增加和减少单个对象时,目标近似集与邻域类之间概率的变化规律,进一步地利用这种规律来构造单个对象变化时邻域决策粗糙集模型上下近似集的增量式更新,在单个对象变化的基础上,通过逐步迭代的方式设计了对象批量变化时的增量式更新算法。实验分析表明,所提出的算法具有较高的增量式更新性能,适用于动态数据环境下邻域决策粗糙集模型的动态更新。
- Abstract:
-
In accordance with the dynamic characteristics of a dataset in a real environment, an incremental updating algorithm of the neighborhood decision-theoretic rough set model is proposed after conducting simple to complex research. In this paper, the change law of the probability between the target approximation set and the neighborhood class is first analyzed in the context of the domain of the neighborhood information system increasing or decreasing individual objects, which is then adopted to construct the incremental updating of the upper and lower approximation sets of the neighborhood decision-theoretic rough set model. On the basis of the change of a single object and given the variety of multiple objects, an incremental updating algorithm is designed through step-by-step iteration. Experimental results show that the proposed algorithm has a high incremental updating performance, thereby making it suitable for the dynamic updating of the neighborhood decision-theoretic rough set model in a dynamic data environment.
更新日期/Last Update:
1900-01-01