[1]尹诗,侯国莲,胡晓东,等.基于AC-GAN数据重构的风电机组主轴承温度监测方法[J].智能系统学报,2021,16(6):1106-1116.[doi:10.11992/tis.202009020]
 YIN Shi,HOU Guolian,HU Xiaodong,et al.Temperature monitoring method of the main bearing of wind turbine based on AC-GAN data reconstruction[J].CAAI Transactions on Intelligent Systems,2021,16(6):1106-1116.[doi:10.11992/tis.202009020]
点击复制

基于AC-GAN数据重构的风电机组主轴承温度监测方法

参考文献/References:
[1] 曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860
ZENG Jun, CHEN Yanfeng, YANG Ping, et al. Review of fault diagnosis methods of large-scale wind turbines[J]. Power system technology, 2018, 42(3): 849-860
[2] 金晓航, 孙毅, 单继宏, 等. 风力发电机组故障诊断与预测技术研究综述[J]. 仪器仪表学报, 2017, 38(5): 1041-1053
JIN Xiaohang, SUN Yi, SHAN Jihong, et al. Fault diagnosis and prognosis for wind turbines: an overview[J]. Chinese journal of scientific instrument, 2017, 38(5): 1041-1053
[3] 刘帅. 基于实时监测数据挖掘的风电机组故障预警方法研究[D]. 北京: 华北电力大学(北京), 2019.
LIU Shuai. Research on fault warning method of wind turbine based on real-time monitoring data mining[D]. Beijing: North China Electric Power University (Beijing), 2019.
[4] 李俊卿, 李斯璇, 陈雅婷, 等. 同步发电机定子故障预警模型[J]. 电力科学与工程, 2020, 36(5): 7-14
LI Junqing, LI Sixuan, CHEN Yating, et al. Synchronous generator stator fault prediction model[J]. Electric power science and engineering, 2020, 36(5): 7-14
[5] 王梓齐, 刘长良. 基于Box-Cox变换和相对熵残差分析的风电机组齿轮箱状态监测[J]. 中国电机工程学报, 2020, 40(13): 4210-4218
WANG Ziqi, LIU Changliang. Wind turbine gearbox condition monitoring based on Box-Cox transformation and relative entropy residual analysis[J]. Proceedings of the CSEE, 2020, 40(13): 4210-4218
[6] 刘帅, 刘长良, 甄成刚. 基于数据分类重建的风电机组故障预警方法[J]. 仪器仪表学报, 2019, 40(8): 1-11
LIU Shuai, LIU Changliang, ZHEN Chenggang. Fault warning method for wind turbine based on classified data reconstruction[J]. Chinese journal of scientific instrument, 2019, 40(8): 1-11
[7] QIU Yingning, FENG Yanhui, INFIELD D. Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing method[J]. Renewable energy, 2020, 145: 1923-1931.
[8] LIANG Tao, QIAN Siqi, MENG Zhaochao, et al. Early fault warning of wind turbine based on BRNN and large sliding window[J]. Journal of intelligent & fuzzy systems, 2020, 38(3): 3389-3401.
[9] 尹诗, 侯国莲, 于晓东, 等. 基于Bi-RNN的风电机组主轴承温度预警方法研究[J]. 郑州大学学报(工学版), 2019, 40(5): 44-50
YIN Shi, HOU Guolian, YU Xiaodong, et al. Research on temperature prediction method for main bearing of wind turbine based on Bi-RNN[J]. Journal of Zhengzhou University (engineering science edition), 2019, 40(5): 44-50
[10] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189
CHEN Xuefeng, GUO Yanjie, XU Caibin, et al. Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189
[11] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361
SHEN Xiaojun, FU Xuejiao, ZHOU Chongcheng, et al. Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China electrotechnical society, 2018, 33(14): 3353-3361
[12] 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44(15): 103-111
JIA Ke, YANG Zhe, WEI Chao, et al. Pilot protection based on spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of electric power systems, 2020, 44(15): 103-111
[13] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016: 785-794.
[14] KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 3149-3157.
[15] 黄伟, 李阳. 基于MCS-MIFS与LightGBM的燃气轮机功率预测方法[J]. 电力科学与工程, 2020, 36(5): 23-31
HUANG Wei, LI Yang. Gas turbine power forecasting based on MCS-MIFS and LightGBM[J]. Electric power science and engineering, 2020, 36(5): 23-31
[16] 周挺, 杨军, 周强明, 等. 基于改进LightGBM的电力系统暂态稳定评估方法[J]. 电网技术, 2019, 43(6): 1931-1940
ZHOU Ting, YANG Jun, ZHOU Qiangming, et al. Power system transient stability assessment method based on modified LightGBM[J]. Power system technology, 2019, 43(6): 1931-1940
[17] 李楠, 李保罗, 朱建华, 等. 计及样本不平衡与重叠的暂态稳定评估方法[J]. 电力系统自动化, 2020, 44(21): 64-71
LI Nan, LI Baoluo, ZHU Jianhua, et al. Transient stability assessment method considering sample imbalance and overlap[J]. Automation of electric power systems, 2020, 44(21): 64-71
[18] 王熠琛, 郑宏, 张明聚, 等. 统计过程控制在地铁穿越工程沉降监测分析中的应用[J]. 岩石力学与工程学报, 2019, 38(S1): 3238-3245
WANG Yichen, ZHENG Hong, ZHANG Mingju, et al. Settlement monitoring and analysis for subway under engineering by using statistical process control[J]. Chinese journal of rock mechanics and engineering, 2019, 38(S1): 3238-3245
[19] 胡姚刚. 大功率风电机组关键部件健康状态监测与评估方法研究[D]. 重庆: 重庆大学, 2017.
HU Yaogang. Study of health condition monitoring and assessment for critical components of large wind turbine generator systems[D]. Chongqing: Chongqing University, 2017.
[20] 于广滨, 卓识, 于军, 等. 基于InfoLSGAN和AC算法的滚动轴承剩余寿命预测[J]. 航空动力学报, 2020, 35(6): 1212-1221
YU Guangbin, ZHUO Shi, YU Jun, et al. Remaining useful life prediction of rolling bearings using InfoLSGAN and AC algorithm[J]. Journal of aerospace power, 2020, 35(6): 1212-1221
[21] 曹锦纲, 李金华, 郑顾平. 基于生成式对抗网络的道路交通模糊图像增强[J]. 智能系统学报, 2020, 15(3): 491-498
CAO Jin’gang, LI Jinhua, ZHENG Guping. Enhancement of blurred road-traffic images based on generative adversarial network[J]. CAAI transactions on intelligent systems, 2020, 15(3): 491-498
[22] 毕晓君, 潘梦迪. 基于生成对抗网络的机载遥感图像超分辨率重建[J]. 智能系统学报, 2020, 15(1): 74-83
BI Xiaojun, PAN Mengdi. Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(1): 74-83
[23] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017: 2642-2651.
[24] DUAN T, ANAND A, DING D Y, et al. NGBoost: natural gradient boosting for probabilistic prediction[C]//Proceedings of the 37th International Conference on Machine Learning. Vienna, Austria, 2020: 2690-2700.
[25] TRUSHEIM F, CONDURACHE A, MERTINS A. Boosting black-box variational inference by incorporating the natural gradient[C]//2018 24th International Conference on Pattern Recognition (ICPR). Beijing, China, 2018: 19-24.

备注/Memo

收稿日期:2020-09-15。
基金项目:国家自然科学基金项目(61973116)
作者简介:尹诗,博士研究生,主要研究方向为风电机组故障预警、新能源状态监测;侯国莲,教授,博士生导师,主要研究方向为风电故障诊断、复杂系统优化控制、新能源技术及控制策略;胡晓东,硕士研究生,主要研究方向为风电机组故障诊断和预警
通讯作者:尹诗.E-mail:yinshi502@163.com

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com