[1]楼传炜,葛泉波,刘华平,等.无人机群目标搜索的主动感知方法[J].智能系统学报,2021,16(3):575-583.[doi:10.11992/tis.202009012]
 LOU Chuanwei,GE Quanbo,LIU Huaping,et al.Active perception method for UAV group target search[J].CAAI Transactions on Intelligent Systems,2021,16(3):575-583.[doi:10.11992/tis.202009012]
点击复制

无人机群目标搜索的主动感知方法

参考文献/References:
[1] 齐小刚, 李博, 范英盛, 等. 多约束下多无人机的任务规划研究综述[J]. 智能系统学报, 2020, 15(2):204-217
QI Xiaogang, LI Bo, FAN YingSheng, et al. A survey of mission planning on UAV system based on multi-constraints[J]. CAAI transactions on intelligent systems, 2020, 15(2):204-217
[2] 张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J]. 计算机工程与应用, 2020, 56(8):10-19
ZHANG Songcan, PU Jiexin, SI Yanna, et al. Survey on application of ant colony algorithm in path planning of mobile robot[J]. Computer engineering and applications, 2020, 56(8):10-19
[3] 鲁亚飞, 吴岸平, 陈清阳. 无人机对地目标多帧融合定位与误差收敛特性分析[J]. 国防科技大学学报, 2021, 43(2):66-73
LU Yafei, WU Anping, CHEN Qingyang. Multi frame fusion positioning and error convergence analysis of UAV to ground target[J]. Journal of National University of Defense Science and Technology, 2021, 43(2):66-73
[4] 李坎, 李云鹏, 赵江波. 无人机集群自组织搜索仿真模型设计与实现[J/OL]. 系统仿真学报:1?14.[2021?06?16] http://kns.cnki.net/kcms/detail/11.3092.V.20210602.1421.004.html.
LI Kan, LI Yunpeng, ZHAO Jiangbo. Design and implementation of UAV swarm self-organizing search model[J/OL]. Journal of system simulation:1?14.[2020?06?16] http://kns.cnki.net/kcms/detail/11.3092.V.20210602.1421.004.html.
[5] 辛建霖, 左家亮, 岳龙飞, 等. 基于改进启发式蚁群算法的无人机自主航迹规划[J/OL]. 航空工程进展:1?8.[2021?06?16] http://kns.cnki.net/kcms/detail/61.1479.V.20210524.1220.010.html.
XIN Jianlin, ZUO Jialiang, YUE Longfei, et al. Autonomous path planning for unmanned aerial vehicle based on improved heuristic ant colony algorithm[J/OL]. Advances in aeronautical science and engineering:1?8.[2021?06?16] http://kns.cnki.net/kcms/detail/61.1479.V.20210524.1220.010.html.
[6] 樊娇, 雷涛, 韩伟, 等. 无人机航迹规划技术研究综述[J]. 郑州大学学报(工学版), 2021, 42(3):39-46
FAN Jiao, LEI Tao, HAN Wei, et al. A survey of UAV path planning[J]. Journal of Zhengzhou University (engineering science), 2021, 42(3):39-46
[7] 裴振兵, 陈雪. 波改进蚁群算法及其在机器人避障中的应用[J]. 智能系统学报, 2015, 10(1):90-96
PEI Zhenbing, CHEN Xuebo. Improved ant colony algorithm and its application in obstacle avoidance for robot[J]. CAAI transactions on intelligent systems, 2015, 10(1):90-96
[8] 曹建秋, 张广言, 徐鹏. A*初始化的变异灰狼优化的无人机路径规划[J/OL]. 计算机工程与应用:1?12.[2021?06?16] http://kns.cnki.net/kcms/detail/11.2127.TP.20201225.0932.014.html.
CAO Jianqiu, ZHANG Guangyan, XU Peng. A* initialization of varitated gray wolf optimized UAV path planning[J/OL]. Computer engineering and applications:1?12.[2021?06?16] http://kns.cnki.net/kcms/detail/11.2127.TP.20201225.0932.014.html.
[9] 莫宏伟, 马靖雯. 基于蚁群算法的四旋翼航迹规划[J]. 智能系统学报, 2016, 11(2):216-225
MO Hongwei, MA Jingwen. Four-rotor route planning based on the ant colony algorithm[J]. CAAI transactions on intelligent systems, 2016, 11(2):216-225
[10] 魏永超, 邓岚, 李涛, 等. 采用改进细菌觅食优化算法的无人机航迹规划[J]. 电讯技术, 2021, 61(5):560-566
WEI Yongchao, DENG Lan, LI Tao, et al. UAV track planning with improved bacterial foraging optimization algorithm[J]. Telecommunication engineering, 2021, 61(5):560-566
[11] 赵红超, 周洪庆, 王书湖. 无人机三维航迹规划的量子粒子群优化算法[J]. 航天控制, 2021, 39(1):40-45
ZHAO Hongchao, ZHOU Hongqing, WANG Shuhu. Quantum particle swarm optimization algorithm of three-dimensional path planning of unmanned aerial vehicle[J]. Aerospace control, 2021, 39(1):40-45
[12] MONTGOMERY J, RANDALL M. Anti-pheromone as a tool for better exploration of search space[C]//Proceedings of the 3rd International Workshop on Ant Algorithms. Brussels, Belgium:Springer, 2002.
[13] 王祝,徐广通,龙腾.基于定制内点法的多无人机协同轨迹规划[J/OL].自动化学报:1?12[2021?07?12] https://doi.org/10.16383/j.aas.c200361.
WANG Zhu, XU Guangtong, LONG Teng. Multi-UAV collaborative trajectory planning based on the custom in-point method[J/OL]. Journal of automation:1?12[2021?07?12] https://doi.org/10.16383/j.aas.c200361.
[14] 吴莹莹, 丁肇红, 刘华平, 等. 面向环境探测的多智能体自组织目标搜索算法[J]. 智能系统学报, 2020, 15(2):289-295
WU Yingying, DING Zhaohong, LIU Huaping, et al. Self-organizing target search algorithm of multi-agent system for envi-ronment detection[J]. CAAI transactions on intelligent systems, 2020, 15(2):289-295
[15] 杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述[J]. 自动化学报, 2020, 46(2):222-241
DU Yonghao, XING Lining, CAI Zhaoquan. Survey on intelligent scheduling technologies for unmanned flying craft clusters[J]. Acta automatica sinica, 2020, 46(2):222-241
[16] PURBOLINGGA Y, JAZIDIE A, EFFENDI R. Modified ant colony algorithm for swarm multi agent exploration on target searching in unknown environment[C]//Proceedings of 2019 International Conference of Artificial Intelligence and Information Technology. Yogyakarta, Indonesia:IEEE, 2019.
[17] LUO Fuyu, WANG Wei, LI Zhe. Multi-unmanned vehicle for region traversal search based on ant colony algorithm[C]//Proceedings of the 3rd International Symposium on Autonomous Systems. Shanghai, China, 2019:329?334.
[18] YUE Wei, XI Yun, GUAN Xianhe. A new searching approach using improved multi-ant colony scheme for multi-UAVs in unknown environments[J]. IEEE access, 2019, 7:161094-161102.
[19] BAJCSY R. Active perception[J]. Proceedings of the IEEE, 1988, 76(8):966-1005.
[20] AKKA K, KHABER F. Mobile robot path planning using an improved ant colony optimization[J]. International journal of advanced robotic systems, 2018, 15(3):1-7.
[21] 时浩, 田聪玲, 任意, 等. 基于稀疏A*算法的微小型固定翼无人机航迹规划[J]. 兵工自动化, 2021, 40(3):14-18, 39
SHI Hao, TIAN Congling, REN Yi, et al. Route planning of small fixed-wing UAV based on sparse A* algorithm[J]. Ordnance industry automation, 2021, 40(3):14-18, 39
[22] LUO Qiang, WANG Haibao, ZHENG Yan, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural computing and applications, 2020, 32(6):1555-1566.
[23] 夏小云, 周育人. 蚁群优化算法的理论研究进展[J]. 智能系统学报, 2016, 11(1):27-36
XIA Xiaoyun, ZHOU Yuren. Advances in theoretical research of ant colony optimization[J]. CAAI transactions on intelligent systems, 2016, 11(1):27-36
[24] 薛政钢. 基于多群体蚁群算法的多无人机协同搜索方法研究[D]. 开封:河南大学, 2018.
XUE Zhenggang. Research on Multi-UAV cooperative search methods based on multi-colony ant colony algorithm[D]. Kaifeng:Henan University, 2018.
[25] 刘刚, 裴红蕾. 复合形引导蜂群寻优的无人机航迹多目标规划[J]. 机械设计与制造, 2020(4):253-257
LIU Gang, PEI Honglei. Unmanned air vehicle route multi-object planning based on bee colony algorithm guided by complex form[J]. Machinery design & manufacture, 2020(4):253-257
相似文献/References:
[1]冀俊忠,刘椿年,黄 振.基于信息素扩散模型解耦控制策略的蚁群算法[J].智能系统学报,2007,2(4):1.
 JI Jun-zhong,LIU Chun-nian,HUANG Zhen.An ant colony optimization algorithm based on a decouplingcontrol strategy of pheromone diffusion model[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[2]秦世引,潘宇雄,苏善伟.小型无人机编队飞行的控制律设计与仿真[J].智能系统学报,2009,4(3):218.
 QIN Shi-yin,PAN Yu-xiong,SU Shan-wei.Design and simulation of formation flight control laws for small unmanned aerial vehicles[J].CAAI Transactions on Intelligent Systems,2009,4():218.
[3]印 峰,王耀南,刘 炜,等.个体速度差异的蚁群算法设计及仿真[J].智能系统学报,2009,4(6):528.[doi:10.3969/j.issn.1673-4785.2009.06.010]
 YIN Feng,WANG Yao-nan,LIU Wei,et al.Design and simulation of an ant colony algorithm based on individual velocity differences[J].CAAI Transactions on Intelligent Systems,2009,4():528.[doi:10.3969/j.issn.1673-4785.2009.06.010]
[4]程显毅,巩向普.改进的模糊C-均值算法在医学图像分割中的应用[J].智能系统学报,2010,5(1):80.
 CHENG Xian-yi,GONG Xiang-pu.An improved fuzzy Cmeans algorithm for segmentation of medical images[J].CAAI Transactions on Intelligent Systems,2010,5():80.
[5]朱杰斌,秦世引.无人机编队飞行的分布式控制策略与控制器设计[J].智能系统学报,2010,5(5):392.[doi:10.3969/j.issn.1673-4785.2010.05.003]
 ZHU Jie-bin,QIN Shi-yin.Distributed control strategy and controller design for UAV formation flight[J].CAAI Transactions on Intelligent Systems,2010,5():392.[doi:10.3969/j.issn.1673-4785.2010.05.003]
[6]孔 笋,陈增强.一种新的混沌蚁群算法及其在QoS组播路由优化问题中的应用[J].智能系统学报,2010,5(6):498.
 KONG Sun,CHEN Zeng-qiang.A new chaotic ant colony optimization algorithm and its application in a QoS multicast routing problem[J].CAAI Transactions on Intelligent Systems,2010,5():498.
[7]钟珞,赵先明,夏红霞.求解最小MPR集的蚁群算法与仿真[J].智能系统学报,2011,6(2):166.
 ZHONG Luo,ZHAO Xianming,XIA Hongxia.An ant colony algorithm and simulation for solving minimum MPR sets[J].CAAI Transactions on Intelligent Systems,2011,6():166.
[8]刘敏,邹杰,冯星,等.人工蜂群算法的无人机航路规划与平滑[J].智能系统学报,2011,6(4):344.
 LIU Min,ZOU Jie,FENG Xing,et al.Smooth trajectory planning of an unmanned aerial vehicleusing an artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2011,6():344.
[9]陈明杰,黄佰川,张旻.混合改进蚁群算法的函数优化[J].智能系统学报,2012,7(4):370.
 CHEN Mingjie,HUANG Baichuan,ZHANG Min.Function optimization based on an improved hybrid ACO[J].CAAI Transactions on Intelligent Systems,2012,7():370.
[10]杨本生,袁祥梦,黄晓光.基于动态优先权蚁群算法的分布式自动化测试调度[J].智能系统学报,2014,9(6):729.[doi:10.3969/j.issn.1673-4785.]
 YANG Bensheng,YUAN Xiangmeng,HUANG Xiaoguang.Ant colony algorithm based on dynamic priority for distributed automation test scheduling[J].CAAI Transactions on Intelligent Systems,2014,9():729.[doi:10.3969/j.issn.1673-4785.]

备注/Memo

收稿日期:2020-09-10。
基金项目:国家自然科学基金项目(61773147,U1509203);浙江省自然科学基金项目(LR17F030005)
作者简介:楼传炜,硕士研究生,主要研究方向为多智能体系统;葛泉波,研究员,博士生导师,博士,主要研究方向为工程信息融合方法及应用、人机混合系统智能评估。发表学术论文100余篇;刘华平,副教授,博士生导师,国家杰出青年基金获得者、中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项。发表学术论文340余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com