[1]刘芳,田枫,李欣,等.融入学习者模型在线学习资源协同过滤推荐方法[J].智能系统学报,2021,16(6):1117-1125.[doi:10.11992/tis.202009005]
LIU Fang,TIAN Feng,LI Xin,et al.A collaborative filtering recommendation method for online learning resources incorporating the learner model[J].CAAI Transactions on Intelligent Systems,2021,16(6):1117-1125.[doi:10.11992/tis.202009005]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第6期
页码:
1117-1125
栏目:
学术论文—知识工程
出版日期:
2021-11-05
- Title:
-
A collaborative filtering recommendation method for online learning resources incorporating the learner model
- 作者:
-
刘芳1, 田枫1, 李欣2, 林琳1
-
1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318;
2. 讷河市第一中学,黑龙江 讷河 161300
- Author(s):
-
LIU Fang1, TIAN Feng1, LI Xin2, LIN Lin1
-
1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China;
2. Nehe No. 1 Middle School, Nehe 161300,China
-
- 关键词:
-
学习者模型; 在线学习资源; 协同过滤; 个性化学习; 学习资源推荐; 学习风格特征; 认知水平特征; 兴趣偏好特征
- Keywords:
-
learner models; online learning resources; collaborative filtering; personalized learning; learning resources recommendation; learning style characteristics; cognitive level characteristics; interest preference characteristics
- 分类号:
-
TP391;G434
- DOI:
-
10.11992/tis.202009005
- 摘要:
-
在线教育存在“信息迷航”问题,而传统的信息推荐方法往往忽视教育的主体—学习者的特征。本文依据教育教学理论,根据在线教育平台中的学习者相关数据,研究构建了适用于在线学习资源个性化推荐的学习者模型。以协同过滤推荐方法为切入点,融合学习者模型中的静态特征和动态特征对协同过滤方法进行改进,建立融入学习者模型的在线学习资源协同过滤推荐方法。以2020年3~7月时间段的东北石油大学“C程序设计”课程学生的真实学习数据和行为数据为数据集,对本文提出的方法进行验证和对比,最后证明本文提出的方法在性能上均优于对比方法。
- Abstract:
-
Online education exhibits the problem of “information loss”. At the same time, traditional information recommendation methods often ignore the characteristics of learners, i.e., the main body of education. Based on the theory of education and teaching as well as the relevant data of learners on the online education platform, this paper constructs a learner model suitable for personalized recommendations for online learning resources. Based on the collaborative filtering recommendation method, the static and dynamic features of the learner model are integrated, with the aim to improve the collaborative filtering method, thereby establishing a collaborative filtering recommendation method for online learning resources incorporating the learner model. The real learning and behavior records of students taking the C programming course in the Northeast Petroleum University starting from March 2020 to July 2020 were selected as the dataset to conduct experiments and evaluations on the proposed research method. The comparative test shows that the performance of the proposed method is better than that of the comparative method.
备注/Memo
收稿日期:2020-09-07。
基金项目:国家自然科学基金项目(61502094); 黑龙江省教育科学规划重点课题(GJB1421113); 黑龙江省高等教育教学改革研究项目(SJGY20190098); 东北石油大学引导性创新基金项目(2020YDL-11);东北石油大学优秀中青年科研创新团队项目(KYCXTD201903);东北石油大学研究生教育创新工程项目(JYCX_11_2020)
作者简介:刘芳,副教授,博士,主要研究方向为智慧教育、多媒体与现代教育技术、计算机视觉、智能数据分析处理。获黑龙江省科技进步二等奖1项、大庆市科技进步二等奖1项。主持和参与国家自然科学基金项目、黑龙江省自然科学基金项目6项。发表学术论文21篇;田枫,教授,博士,主要研究方向为计算机视觉、智能数据分析处理。主持和参与国家自然科学基金项目、国家科技重大专项项目8项。获发明专利授权16项。发表学术论文31篇;李欣,助教,主要研究方向为智慧教育
通讯作者:刘芳.E-mail:lfliufang1983@126.com
更新日期/Last Update:
2021-12-25