[1]甘雨,吴雨,王建勇.新冠肺炎疫情趋势预测模型[J].智能系统学报,2021,16(3):528-536.[doi:10.11992/tis.202008037]
 GAN Yu,WU Yu,WANG Jianyong.Epidemics trend prediction model of COVID-19[J].CAAI Transactions on Intelligent Systems,2021,16(3):528-536.[doi:10.11992/tis.202008037]
点击复制

新冠肺炎疫情趋势预测模型

参考文献/References:
[1] IMAI N, CORI A, DORIGATTI I, et al. Transmissibility of 2019-nCoV[EB/OL].(2020?01?25)[2020?07?30] https://spiral.imperial.ac.uk:8443/handle/10044/1/77148.
[2] READ J M, BRIDGEN J R E, CUMMINGS D A T, et al. Novel coronavirus 2019-nCoV:early estimation of epidemiological parameters and epidemic predictions[EB/OL]. (2020?01?28)[2020?07?28] https://www.medrxiv.org/CONTENT/10.1101/2020.01.23.20018549V2.
[3] SHEN Mingwang, PENG Zhihang, XIAO Yanni, et al. Modeling the epidemic trend of the 2019 novel coronavirus outbreak in China[J]. The innovation, 2020, 1(3):100048.
[4] HARKO T, LOBO F S N, MAK M K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates[J]. Applied mathematics and computation, 2014, 236:184-194.
[5] KR?GER M, SCHLICKEISER R. Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A:time-independent reproduction factor[J]. Journal of pysics A, 2020(50):505601.
[6] LI M Y, MULDOWNEY J S. Global stability for the SEIR model in epidemiology[J]. Mathematical biosciences, 1995, 125(2):155-164.
[7] GODIO A, PACE F, VERGNANO A. SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence[J]. International journal of environmental research and public health, 2020, 17(10):3535.
[8] WU J T, LEUNG K, LEUNG G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China:a modelling study[J]. The lancet, 2020, 395(10225):689-697.
[9] YANG Zifeng, ZENG Zhiqi, WANG Ke, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of thoracic disease, 2020, 12(3):165-174.
[10] WALKER P, WHITTAKER C, WATSON O, et al. The global impact of COVID-19 and strategies for mitigation and suppression[EB/OL]. (2020?03?26)[2020?07?28] https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-12-global-impact-covid-19/.
[11] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3):369-374
FAN Ruguo, WANG Yibo, LUO Ming, et al. SEIR-based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):369-374
[12] ARMOUR G C, BUFFA E S. A heuristic algorithm and simulation approach to relative location of facilities[J]. Management science, 1963, 9(2):294-309.
[13] 梅文娟, 刘震, 朱静怡, 等. 新冠肺炎疫情极限IR实时预测模型[J]. 电子科技大学学报, 2020, 49(3):362-368
MEI Wenjuan, LIU Zhen, ZHU Jingyi, et al. Extreme IR model for COVID-19 real-time forecasting[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):362-368
[14] GUO Wei, XU Tao, TANG Keming. M-estimator-based online sequential extreme learning machine for predicting chaotic time series with outliers[J]. Neural computing and applications, 2017, 28(12):4093-4110.
[15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016, 770-778.
[16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-07-28] http://arxiv.org/abs/1409.1556.
[17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY, USA:Curran Associates Inc., 2012:1097-1105.
[18] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. The journal of machine learning research, 2011, 12:2493-2537.
[19] TAY Y, LUU A T, HUI S C. Compare, compress and propagate:enhancing neural architectures with alignment factorization for natural language inference[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium, 2018:1565?1575.
[20] DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2019?05?24)[2020?07?28] http://arxiv.org/abs/1810.04805.
[21] HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE signal processing magazine, 2012, 29(6):82-97.
[22] SAK H, SENIOR A, RAO K, et al. Fast and accurate recurrent neural network acoustic models for speech recognition[EB/OL]. (2015?07?24)[2020?07?28] http://arxiv.org/abs/1507.06947.
[23] XIONG W, DROPPO J, HUANG X, et al. Achieving human parity in conversational speech recognition[EB/OL]. (2015?07?24)[2020?07?28] https://arxiv.org/abs/1610.05256.
[24] LIPTON Z C. A critical review of recurrent neural networks for sequence learning[EB/OL]. (2015?10?17)[2020?07?28] http://arxiv.org/abs/1506.00019.
[25] WANG Jianyong, ZHANG Lei, GUO Quan, et al. Recurrent neural networks with auxiliary memory units[J]. IEEE transactions on neural networks and learning systems, 2018, 29(5):1652-1661.
[26] WANG Jianyong, ZHANG Lei, CHEN Yuanyuan, et al. A new delay connection for long short-term memory networks[J]. International journal of neural systems, 2018, 28(6):1750061.
[27] MALHOTRA P, VIG L, SHROFF G, et al. Long short term memory networks for anomaly detection in time series[C]//ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium, 2015:22?24.
[28] 云南省统计局, 国家统计局云南调查总队. 云南省2019年国民经济和社会发展统计公报[EB/OL]. (2020?04?14)[2020?07?28] http://stats.yn.gov.cn/tjsj/tjgb/202004/t20200414_938595.html.
[29] 上海市统计局. 2019年上海市国民经济和社会发展统计公报[EB/OL]. (2020?03?09)[2020?07?28] http://tjj.sh.gov.cn/tjgb/20200329/05f0f4abb2d448a69e4517f6a6448819.html.
[30] 陕西省统计局, 国家统计局陕西调查总队. 2019年陕西省国民经济和社会发展统计公报[EB/OL]. (2020?03?20)[2020?07?28] http://www.shaanxi.gov.cn/zfxxgk/fdzdgknr/tjxx/tjgb_240/wap.html.

备注/Memo

收稿日期:2020-08-31。
基金项目:国家自然科学基金青年基金项目(61906127)
作者简介:甘雨,硕士研究生,主要研究方向为深度学习、智能医学图像分析;吴雨,博士研究生,主要研究方向为深度学习、智能医学图像分析;王建勇,副研究员,博士,主要研究方向为人工智能和智能医学。主持国家自然科学基金、青年基金、四川省科技支持计划项目等科研项目4项,获得2019年度中国人工智能学会优秀博士论文奖。发表学术论文8篇
通讯作者:王建勇.E-mail:wjy@scu.edu.cn

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com