[1]郑静,熊伟丽.基于互信息的多块k近邻故障监测及诊断[J].智能系统学报,2021,16(4):717-728.[doi:10.11992/tis.202007035]
 ZHENG Jing,XIONG Weili.Multiblock k-nearest neighbor fault monitoring and diagnosis based on mutual information[J].CAAI Transactions on Intelligent Systems,2021,16(4):717-728.[doi:10.11992/tis.202007035]
点击复制

基于互信息的多块k近邻故障监测及诊断

参考文献/References:
[1] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems[J]. Measurement science and technology, 2001, 12(10): 1745.
[2] GE Zhiqiang, SONG Zhihuan, GAO Furong. Review of recent research on data-based process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(10): 3534-3562.
[3] QIN S J. Statistical process monitoring: basics and beyond[J]. Journal of chemometrics, 2003, 17(8/9): 480-502.
[4] JIANG Qingchao, YAN Xuefeng, ZHAO Weixiang. Fault detection and diagnosis in chemical processes using sensitive principal component analysis[J]. Industrial & engineering chemistry research, 2013, 52(4): 1635-1644.
[5] KRESTA J V, MACGREGOR J F, MARLIN T E. Multivariate statistical monitoring of process operating performance[J]. The Canadian journal of chemical engineering, 1991, 69(1): 35-47.
[6] NOMIKOS P, MACGREGOR J F. Multivariate SPC charts for monitoring batch processes[J]. Technometrics, 1995, 37(1): 41-59.
[7] HE Q P, WANG Jin. Principal component based k-nearest-neighbor rule for semiconductor process fault detection[C]//Proceedings of 2018 American Control Conference. Seattle, USA, 2008: 1606-1611.
[8] HE Q P, WANG Jin. Fault detection using the k-Nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE transactions on semiconductor manufacturing, 2007, 20(4): 345-354.
[9] 陈海彬, 郭金玉, 谢彦红. 基于改进K-means聚类的kNN故障检测研究[J]. 沈阳化工大学学报, 2013, 27(1): 69-73
CHEN Haibin, GUO Jinyu, XIE Yanhong. kNN fault detection based on improved K-means clustering[J]. Journal of Shenyang University of Chemical Technology, 2013, 27(1): 69-73
[10] 魏域琴, 宋丹丹, 翁正新. 基于DPCA-KNN的工业过程故障诊断方法研究[C]//第三十八届中国控制会议论文集(7). 广州, 2019: 14-19.
WEI Yuqin, SONG Dandan, WENG Zhengxin. Research on fault diagnosis method of industrial process based on DPCA-KNN[C]//Proceedings of the 38th China Control Conference. Guangzhou, 2019: 14-19.
[11] 郭小萍, 徐月, 李元. 基于特征空间自适应k近邻工业过程故障检测[J]. 高校化学工程学报, 2019, 33(2): 453-461
GUO Xiaoping, XU Yue, LI Yuan. A feature space adaptive k-nearest neighbor method for industrial fault detection[J]. Journal of chemical engineering of Chinese universities, 2019, 33(2): 453-461
[12] 冯立伟, 张成, 李元, 等. 基于标准距离k近邻的多模态过程故障检测策略[J]. 控制理论与应用, 2019, 36(4): 553-560
FENG Liwei, ZHANG Cheng, LI Yuan, et al. Fault detection strategy of standard-distance-based k nearest neighbor rule in multimode processes[J]. Control theory & applications, 2019, 36(4): 553-560
[13] MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE journal, 1994, 40(5): 826-838.
[14] 王振雷, 江伟, 王昕. 基于多块MICA-PCA的全流程过程监控方法[J]. 控制与决策, 2018, 33(2): 269-274
WANG Zhenlei, JIANG Wei, WANG Xin. Plant-wide process monitoring based on multiblock MICA-PCA[J]. Control and decision, 2018, 33(2): 269-274
[15] 石怀涛, 王雨桐, 李颂华, 等. 基于多块相对变换独立主元分析的故障诊断方法[J]. 控制与决策, 2018, 33(11): 2009-2014
SHI Huaitao, WANG Yutong, LI Songhua, et al. Fault diagnosis approach based on relative transformation ICA of multiblock[J]. Control and decision, 2018, 33(11): 2009-2014
[16] GE Zhiqiang, SONG Zhihuan. Distributed PCA model for plant-wide process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(5): 1947-1957.
[17] JIANG Qingchao, YAN Xuefeng. Plant-wide process monitoring based on mutual information-multiblock principal component analysis[J]. ISA transactions, 2014, 53(5): 1516-1527.
[18] HUANG Junping, YAN Xuefeng. Quality relevant and independent two block monitoring based on mutual information and KPCA[J]. IEEE transactions on industrial electronics, 2017, 64(8): 6518-6527.
[19] JIANG Qingchao, YAN Xuefeng. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of process control, 2015, 32: 38-50.
[20] 童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10): 4101-4106
TONG Chudong, SHI Xuhua. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC journal, 2015, 66(10): 4101-4106
[21] 范雪莉, 冯海泓, 原猛. 基于互信息的主成分分析用于声场景分类[J]. 声学技术, 2013, 32(3): 222-227
FAN Xueli, FENG Haihong, YUAN Meng. Mutual information based principal component analysis for acoustic environment classification[J]. Technical acoustics, 2013, 32(3): 222-227
[22] 周红标, 乔俊飞. 基于高维k-近邻互信息的特征选择方法[J]. 智能系统学报, 2017, 12(5): 595-600
ZHOU Hongbiao, QIAO Junfei. Feature selection method based on high dimensional k-nearest neighbors mutual information[J]. CAAI transactions on intelligent systems, 2017, 12(5): 595-600
[23] GE Zhiqiang, SONG Zhihuan. Multimode process monitoring based on Bayesian method[J]. Journal of chemometrics, 2009, 23(12): 636-650.
[24] YIN Shen, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of process control, 2012, 22(9): 1567-1581.
[25] CHIANG L H, RUSSELL E L, BRAATZ R D. Tennessee Eastman process[M]//CHIANG L H, RUSSELL E L, BRAATZ R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001: 103-112.
相似文献/References:
[1]陈伟卿,李冠华,欧宗瑛,等.基于灰度互信息和梯度相似性的医学图像配准及其加速处理[J].智能系统学报,2008,3(6):498.
 CHEN Wei-qing,LI Guan-hua,OU Zong-ying,et al.Medical image registration based on grey mutual information and gradient similarity with an accelerated processing method[J].CAAI Transactions on Intelligent Systems,2008,3():498.
[2]李冰寒,高晓利,刘三阳,等.利用互信息学习贝叶斯网络结构[J].智能系统学报,2011,6(1):68.
 LI-Binghan,GAO-Xiaoli,LIU-Sanyang,et al.Learning Bayesian network structures based on mutual information[J].CAAI Transactions on Intelligent Systems,2011,6():68.
[3]张昭昭,乔俊飞,杨刚.自适应前馈神经网络结构优化设计[J].智能系统学报,2011,6(4):312.
 ZHANG Zhaozhao,QIAO Junfei,YANG Gang.An adaptive algorithm for designingoptimal feedforward neural network architecture[J].CAAI Transactions on Intelligent Systems,2011,6():312.
[4]宋晓丽,刘冀伟,张晓星.分布式视频编码的关键帧提取算法[J].智能系统学报,2011,6(6):539.
 SONG Xiaoli,LIU Jiwei,ZHANG Xiaoxing.A key frame selection algorithm for distributed video coding[J].CAAI Transactions on Intelligent Systems,2011,6():539.
[5]周红标,乔俊飞.基于高维k-近邻互信息的特征选择方法[J].智能系统学报,2017,12(5):595.[doi:10.11992/tis.201609020]
 ZHOU Hongbiao,QIAO Junfei.Feature selection method based on high dimensional k-nearest neighbors mutual information[J].CAAI Transactions on Intelligent Systems,2017,12():595.[doi:10.11992/tis.201609020]
[6]王贺彬,葛泉波,刘华平,等.面向观测融合和吸引因子的多机器人主动SLAM[J].智能系统学报,2021,16(2):371.[doi:10.11992/tis.202006019]
 WANG Hebin,GE Quanbo,LIU Huaping,et al.Multi-robot active SLAM for observation fusion and attractor[J].CAAI Transactions on Intelligent Systems,2021,16():371.[doi:10.11992/tis.202006019]
[7]曲海成,王宇萍,谢梦婷,等.结合亮度感知与密集卷积的红外与可见光图像融合[J].智能系统学报,2022,17(3):643.[doi:10.11992/tis.202104004]
 QU Haicheng,WANG Yuping,XIE Mengting,et al.Infrared and visible image fusion combined with brightness perception and dense convolution[J].CAAI Transactions on Intelligent Systems,2022,17():643.[doi:10.11992/tis.202104004]
[8]张智慧,杨燕,张熠玲.面向不完整多视图聚类的深度互信息最大化方法[J].智能系统学报,2023,18(1):12.[doi:10.11992/tis.202203051]
 ZHANG Zhihui,YANG Yan,ZHANG Yiling.Deep mutual information maximization method for incomplete multi-view clustering[J].CAAI Transactions on Intelligent Systems,2023,18():12.[doi:10.11992/tis.202203051]
[9]余紫康,董红斌.具有混合策略的樽海鞘群特征选择算法[J].智能系统学报,2024,19(3):757.[doi:10.11992/tis.202209040]
 YU Zikang,DONG Hongbin.Salp swarm feature selection algorithm with a hybrid strategy[J].CAAI Transactions on Intelligent Systems,2024,19():757.[doi:10.11992/tis.202209040]
[10]李旭,蔡彪,胡能兵.基于三元互信息的图对比学习方法研究[J].智能系统学报,2024,19(5):1257.[doi:10.11992/tis.202308004]
 LI Xu,CAI Biao,HU Nengbing.Research on graph contrastive learning method based on ternary mutual information[J].CAAI Transactions on Intelligent Systems,2024,19():1257.[doi:10.11992/tis.202308004]

备注/Memo

收稿日期:2020-07-22。
基金项目:国家自然科学基金项目(61773182);国家重点研发计划子课题(2018YFC1603705-03)
作者简介:郑静,硕士研究生,主要研究方向为过程故障检测;熊伟丽,教授,博士生导师,主要研究方向为复杂工业过程建模与监控、智能软测量技术。主持国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省产学研等省部级以上纵向项目等,获授权发明专利 近20项。发表学术论文近百篇.
通讯作者:熊伟丽.E-mail:greenpre@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com