[1]王倩倩,苗夺谦,张远健.深度自编码与自更新稀疏组合的异常事件检测算法[J].智能系统学报,2020,15(6):1197-1203.[doi:10.11992/tis.202007003]
WANG Qianqian,MIAO Duoqian,ZHANG Yuanjian.Abnormal event detection method based on deep auto-encoder and self-updating sparse combination[J].CAAI Transactions on Intelligent Systems,2020,15(6):1197-1203.[doi:10.11992/tis.202007003]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第6期
页码:
1197-1203
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2020-11-05
- Title:
-
Abnormal event detection method based on deep auto-encoder and self-updating sparse combination
- 作者:
-
王倩倩, 苗夺谦, 张远健
-
同济大学 嵌入式系统与服务计算教育部重点实验室, 上海 201804
- Author(s):
-
WANG Qianqian, MIAO Duoqian, ZHANG Yuanjian
-
Key Laboratory of Embedded System and Service Computing, Tongji University, Shanghai 201804, China
-
- 关键词:
-
深度学习; 稀疏组合; 自动编码器; 自更新; 异常事件检测; 卷积神经网络; 无监督学习; 稀疏学习
- Keywords:
-
deep learning; sparse combination; auto-encoder; self-updating; abnormal event detection; convolution neural network; unsupervised learning; sparse representation
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202007003
- 摘要:
-
基于深度学习的异常检测算法输入通常为视频帧或光流图像,检测精度和速度较低。针对上述问题,提出了一种以运动前景块为中心的卷积自动编码器和自更新稀疏组合学习(convolutional auto-encoders and self-updating sparse combination learning, CASSC)算法。首先,采用自适应混合高斯模型(gaussian mixture model, GMM)提取视频前景,并以滑动窗口的方式根据前景像素点占比过滤噪声;其次,构建3个卷积自动编码器提取运动前景块的时空特征;最后,使用自更新稀疏组合学习对特征进行重构,依据重构误差进行异常判断。实验结果表明,与现有算法相比,该方法不仅有效地提高了异常事件检测的准确性,且可以满足实时检测需求。
- Abstract:
-
In the construction of a deep learning model for abnormal event detection, frames or optical flow are considered but the resulting accuracy and speed are not satisfactory. To address these problems, we present an algorithm based on convolutional auto-encoders and self-updating sparse combination learning, which is centered on the movement of foreground blocks. First, we use an adaptive Gaussian mixture model to extract the foreground. Using a sliding window, the foreground blocks that are moving, are filtered based on the number of foreground pixels. Three convolutional auto-encoders are then constructed to extract the temporal and spatial features of the moving foreground blocks. Lastly, self-updating sparse combination learning is applied to reconstruct the features and identify abnormal events based on the reconstruction error. The experimental results show that compared with existing algorithms, the proposed method improves the accuracy of abnormality detection and enables real-time detection.
备注/Memo
收稿日期:2020-07-01。
基金项目:国家自然科学基金项目(61976158,61673301)
作者简介:王倩倩,硕士研究生,主要研究方向为视频中的异常事件检测与行人重识别;苗夺谦,教授,博士生导师,主要研究方向为人工智能、机器学习、大数据分析、粒度计算。主持完成国家自然科学基金项目6项,在研国家重点研发计划项目1项、公安部重点计划项目1项。荣获CAAI吴文俊人工智能自然科学奖二等奖、国家教学成果二等奖,授权专利12项。发表学术论文100余篇,出版教材和学术著作10部;张远健,博士研究生,主要研究方向为粒度计算、不确定性
通讯作者:苗夺谦.E-mail:dqmiao@tongji.edu.cn
更新日期/Last Update:
2020-12-25