[1]常利伟,田晓雄,张宇青,等.基于多源异构数据融合的网络安全态势评估体系[J].智能系统学报,2021,16(1):38-47.[doi:10.11992/tis.202006053]
CHANG Liwei,TIAN Xiaoxiong,ZHANG Yuqing,et al.Network security situation assessment architecture based on multi-source heterogeneous data fusion[J].CAAI Transactions on Intelligent Systems,2021,16(1):38-47.[doi:10.11992/tis.202006053]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第1期
页码:
38-47
栏目:
学术论文—机器学习
出版日期:
2021-01-05
- Title:
-
Network security situation assessment architecture based on multi-source heterogeneous data fusion
- 作者:
-
常利伟1,2, 田晓雄1, 张宇青1, 钱宇华2, 胡治国2
-
1. 山西财经大学 信息学院,山西 太原 030006;
2. 山西大学 大数据科学与产业研究院,山西 太原 030006
- Author(s):
-
CHANG Liwei1,2, TIAN Xiaoxiong1, ZHANG Yuqing1, QIAN Yuhua2, HU Zhiguo2
-
1. College of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China;
2. Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, China
-
- 关键词:
-
网络安全; 网络安全态势评估; 数据融合; 层次化分析方法; 网络攻击; 威胁量化; 检测评估
- Keywords:
-
network security; network security situation assessment; data fusion; hierarchical analysis method; network attacks; threat quantification; detection and evaluation
- 分类号:
-
TP393
- DOI:
-
10.11992/tis.202006053
- 摘要:
-
针对基于单点网络数据很难准确地检测网络恶意活动且无法有效地分析网络状况的问题,本文通过引入多源异构数据融合策略,借鉴层次化网络分析思想,构建出包含流量探测模块、属性提炼模块、决策引擎模块、多源融合模块、态势评估模块等五大模块的网络安全态势评估体系。评估体系以BP神经网络为决策引擎分析各数据源的数据,使用指数加权D-S证据理论融合各决策引擎的输出结果,并基于层次化网络威胁评估方法评估网络威胁状况。实验结果表明:不同探测器探测到的数据对于识别不同类型攻击的优势不同;多源融合技术进一步将识别攻击类型的准确率提升到88.7%;层次化网络威胁评估方法能够有效地评估网络威胁状况。
- Abstract:
-
Because it is difficult to detect malicious network activity precisely and analyze the network situation effectively based only on the single point network data, in this paper, we propose a network security situation assessment architecture consisting of five modules: a traffic detection module, attribute extraction module, decision engine module, multi-source fusion module, and situation assessment module based on the strategy of multi-source heterogeneous data fusion and the idea of hierarchical network security assessment. In this assessment architecture, a BP neural network is used as the decision engine to analyze the multi-source heterogeneous data, the exponential weighting D-S evidence theory is used to merge the output of multiple decision engines, and the threat status of the network is exhibited by referring to the hierarchical network security threat assessment method. The experimental results demonstrate that first, the data from different detectors have different advantages for identifying different types of attacks; second, the multi-source fusion technology can further improve the accuracy of identifying attacks, which is up to 88.7%; and third, the hierarchical network analysis method can exactly exhibit the threat status of network effectivity.
备注/Memo
收稿日期:2020-06-30。
基金项目:山西省自然科学基金项目(201801D221159);山西省高等学校科技创新项目(2019L0470);山西省重点研发项目(201903D421003)
作者简介:常利伟,副教授,中国计算机学会会员、中国密码学会会员、山西省区块链研究会理事,主要研究方向为密码算法、网络安全态势感知、量子保密通信和区块链。参与国家级项目4项,主持山西省科研及教研项目3项,获山西省教学成果一等奖1项。发表学 术论文近20篇;田晓雄,硕士研究生,主要研究方向为网络安全和信息融合;张宇青,硕士研究生,主要研究方向为网络安全与模式识别
通讯作者:常利伟. E-mail:changliwei002@163.com
更新日期/Last Update:
2021-02-25