[1]付昆,田金文,马懿超.多特征融合的异视角目标关联算法[J].智能系统学报,2020,15(5):847-855.[doi:10.11992/tis.202006037]
FU Kun,TIAN Jinwen,MA Yichao.Target association from different perspectives based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15(5):847-855.[doi:10.11992/tis.202006037]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第5期
页码:
847-855
栏目:
学术论文—智能系统
出版日期:
2020-09-05
- Title:
-
Target association from different perspectives based on multi-feature fusion
- 作者:
-
付昆1, 田金文1, 马懿超2
-
1. 华中科技大学 多谱信息处理国家级重点实验室,武汉 湖北 430074;
2. 北京机电工程研究所,北京 100074
- Author(s):
-
FU Kun1, TIAN Jinwen1, MA Yichao2
-
1. College of Automation, National Key Laboratory of Multispectral Information Processing Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Beijing Electro-mechanical Engineering Institute, Beijing 100074, China
-
- 关键词:
-
目标关联; 异视角; 协同探测; 无人机; 多特征融合; 姿态数据; 拓扑特征; 颜色特征; D-S证据理论
- Keywords:
-
target association; different perspective; cooperative detection; UAV; multi feature fusion; attitude data; topological feature; color feature; D-S evidence theory
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202006037
- 文献标志码:
-
A
- 摘要:
-
目标关联在协同多目标探测中具有重要意义,受视角变换等因素的影响,传统目标关联算法在异视角目标观测情况下效果较差。本文提出了一种基于拓扑特征与颜色特征融合的无人机协同侦查目标关联算法,通过利用无人机提供的位置、姿态及其搭载传感器获得的多维特征数据,提取出目标的拓扑特征及颜色特征,并通过D-S证据理论融合多维特征,完成对异视角目标群的关联。实验表明,这种算法框架能够有效帮助无人机完成对目标群的关联任务。
- Abstract:
-
Target association has great significance in collaborative multi-target detection. As traditional target association algorithms are affected by factors such as changes in view angle, they are less effective when observing targets from different perspectives. This paper proposes a target association algorithm for collaborative reconnaissance by unmanned aerial vehicles (UAVs) based on the fusion of topological and color features. Using position, attitude, and multi-dimensional feature data obtained by the sensors in the UAV, the topological and color features of the target are extracted and the multi-dimensional features are then fused based on the Dempster–Shafer evidence theory to complete the association of target groups from different perspectives. Experiments show that this algorithm framework can effectively help UAVs to complete the task of target group association.
备注/Memo
收稿日期:2020-06-23。
基金项目:国家自然科学基金项目(61273279)
作者简介:付昆,硕士研究生,主要研究方向为遥感图像处理、协同目标跟踪、计算机视觉;田金文,教授,博士生导师,中国电子学会高级会员,主要研究方向为计算机视觉及其应用、目标识别及应用、遥感图像信息处理、目标光学特性建模与成像仿真。主持国家自然科学基金项目1项,国家863项目多项。发表学术论文20余篇;马懿超,高级工程师,主要研究方向为信息融合、自动目标识别
通讯作者:田金文.E-mail:jwtian@mail.hust.edu.cn
更新日期/Last Update:
2021-01-15