[1]钟秋波,郑彩明,朴松昊.时空域融合的骨架动作识别与交互研究[J].智能系统学报,2020,15(3):601-608.[doi:10.11992/tis.202006029]
ZHONG Qiubo,ZHENG Caiming,PIAO Songhao.Research on skeleton-based action recognition with spatiotemporal fusion and human–robot interaction[J].CAAI Transactions on Intelligent Systems,2020,15(3):601-608.[doi:10.11992/tis.202006029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第3期
页码:
601-608
栏目:
人工智能院长论坛
出版日期:
2020-05-05
- Title:
-
Research on skeleton-based action recognition with spatiotemporal fusion and human–robot interaction
- 作者:
-
钟秋波1,2, 郑彩明1, 朴松昊3
-
1. 宁波工程学院 机器人学院,浙江 宁波 315211;
2. 哈尔滨工业大学 机器人系统与技术国家重点实验室,黑龙江 哈尔滨 150001;
3. 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001
- Author(s):
-
ZHONG Qiubo1,2, ZHENG Caiming1, PIAO Songhao3
-
1. Robotics Institute, Ningbo University of Technology, Ningbo 315211, China;
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
3. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
-
- 关键词:
-
动作识别; 时空关系; 姿态运动; 时空域融合; 图卷积神经网络; 时域关注度; 自适应特征增强; 人体动作交互
- Keywords:
-
action recognition; temporal and spatial relationships; posture motion; spatiotemporal fusion; graph convolution network; temporal attention; adaptive feature enhancement; human–robot interaction
- 分类号:
-
TP312
- DOI:
-
10.11992/tis.202006029
- 摘要:
-
在人体骨架结构动作识别方法中,很多研究工作在提取骨架结构上的空间信息和运动信息后进行融合,没有对具有复杂时空关系的人体动作进行高效表达。本文提出了基于姿态运动时空域融合的图卷积网络模型(PM-STFGCN)。对于在时域上存在大量的干扰信息,定义了一种基于局部姿态运动的时域关注度模块(LPM-TAM),用于抑制时域上的干扰并学习运动姿态的表征。设计了基于姿态运动的时空域融合模块(PM-STF),融合时域运动和空域姿态特征并进行自适应特征增强。通过实验验证,本文提出的方法是有效性的,与其他方法相比,在识别效果上具有很好的竞争力。设计的人体动作交互系统,验证了在实时性和准确率上优于语音交互系统。
- Abstract:
-
Temporal dynamics of postures over time is crucial for sequence-based action recognition. Human actions can be represented by corresponding motions of an articulated skeleton. Skeleton-based action recognition algorithm is used for studying motions of a body. Skeleton-based action recognition uses many methods, and research shows that most of them extract spatial and motion information separately from a skeleton structure and then combine them for further processing. However, this process is not able to efficiently deliver human motion features with complex temporal and spatial relationships. We propose a novel posture motion-based, spatiotemporal fused graph convolution network for skeleton-based action recognition. First, we define a local posture motion-based time attention module, which is used to constrain the disturbance information in temporal domain and learn the representation of motion posture features. Then, we design a posture motion-based, spatiotemporal fusion module. This module fuses spatial motion and temporal attitude features and adaptively enhances the skeleton joint features. Extensive experiments have been performed and the results verified the effectiveness of our proposed method. The proposed method has competitive performance, and it is concluded that the human–robot interaction system based on action recognition is superior to the speech interaction system in real-time and with respect to accuracy.
备注/Memo
收稿日期:2020-06-17。
基金项目:国家自然科学基金项目(61203360,61502256);浙江省自然科学基金项目(LQ12F03001)
作者简介:钟秋波,副教授,博士,宁波工程学院机器人学院执行副院长,主要研究方向为机器人智能控制、计算机视觉图像处理、机器人运动控制。先后主持和参与横、纵向科研项目20多项。发表学术论文20余篇;郑彩明,硕士研究生,主要研究方向为机器人智能控制、计算机视觉、图像处理、机器人运动控制;朴松昊,教授,博士生导师,中国人工智能学会常务理事,机器人文化艺术专业委员会主任,主要研究方向为机器人环境感知与导航、机器人运动规划、多智能体机器人协作。主持或参加国家自然科学基金、国家“863”计划重点、教育部“985”等多个项目。发表学术论文60余篇
通讯作者:钟秋波.E-mail:zhongqiubo@nbut.edu.cn
更新日期/Last Update:
1900-01-01