[1]赵文清,孔子旭,赵振兵.隔级融合特征金字塔与CornerNet相结合的小目标检测[J].智能系统学报,2021,16(1):108-116.[doi:10.11992/tis.202004033]
ZHAO Wenqing,KONG Zixu,ZHAO Zhenbing.Small target detection based on a combination of feature pyramid and CornerNet[J].CAAI Transactions on Intelligent Systems,2021,16(1):108-116.[doi:10.11992/tis.202004033]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第1期
页码:
108-116
栏目:
学术论文—知识工程
出版日期:
2021-01-05
- Title:
-
Small target detection based on a combination of feature pyramid and CornerNet
- 作者:
-
赵文清1,3, 孔子旭1, 赵振兵2
-
1. 华北电力大学 控制与计算机工程学院,河北 保定 071003;
2. 华北电力大学 电气与电子工程学院,河北 保定 071003;
3. 复杂能源系统智能计算教育部工程研究中心,河北 保定 071003
- Author(s):
-
ZHAO Wenqing1,3, KONG Zixu1, ZHAO Zhenbing2
-
1. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China;
2. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;
3. Engineering Research Ce
-
- 关键词:
-
CornerNet; 小目标检测; 卷积; 特征图; 隔级融合; 上下融合; 旁路连接; 特征金字塔
- Keywords:
-
CornerNet; small target detection; convolution; feature map; interval fusion; upper and lower fusion; bypass connection; feature pyramid
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202004033
- 摘要:
-
为弥补CornerNet中小目标语义信息弱的缺陷,提出隔级融合特征金字塔的方法,提高小目标平均准确率。 对骨干网络后半部分融合后的4个特征图进行提取,将尺寸较小的特征图进行2次卷积,得到2个新的特征图;运用上下融合、隔级融合和旁路连接的思想,生成融合后的特征图并将其组成特征金字塔。将改进后的算法与当前主流CornerNet、Faster RCNN、RetinaNet算法在MS COCO数据集上进行比较,结果表明,改进后算法在对小目标进行检测时,小目标平均准确率有较大提高。隔级融合特征金字塔在CornerNet上能有效融合高低层特征图,使融合后的特征图有较强的语义信息,提高CornerNet网络的小目标平均准确率。
- Abstract:
-
To improve the problem of the weak semantic information of the small target in CornerNet, a method of the hierarchical fusion feature pyramid is proposed to increase the average accuracy of the small target. The method first extracts the four feature maps after the fusion of the second half of the backbone network, then convolves the feature maps with a smaller size twice to obtain two new feature maps, and finally uses the ideas of the upper and lower fusion, interlevel fusion, and bypass connection to generate a fused feature map and form it into a feature pyramid. The result shows that the average accuracy for small targets obtained by our algorithm has been greatly improved compared with those by current mainstream algorithms, such as CornerNet, Faster RCNN, and RetinaNet on the MS COCO dataset, which demonstrates great superiority. The inter-level fusion feature pyramid can effectively fuse high-level and low-level feature maps on CornerNet, so that the fused feature maps have strong semantic information, and improve the average accuracy of the small targets of the CornerNet network.
备注/Memo
收稿日期:2020-04-27。
基金项目:国家自然科学基金项目(61871182);中央高校基本科研业务费面上项目(2020MS153)
作者简介:赵文清,教授,主要研究方向为人工智能与图像处理,主持或参与国家自然科学基金、河北省自然科学基金以及省部级项目10余项,获河北省科技进步二等奖1项、河北省科技进步三等奖1项。发表学术论文30余篇,出版学术专著1部;孔子旭,硕士研究生,主要研究方向为深度学习和目标检测;赵振兵,副教授,主要研究方向为深度学习与计算机视觉,主持或参与国家自然科学基金、河北省自然科学基金、北京市自然科学基金以及省部级项目10余项,获河北省科技进步一等奖1项。发表学术论文20余篇,出版学术专著3部
通讯作者:赵文清. E-mail:jbzwq@126.com
更新日期/Last Update:
2021-02-25