[1]赵文清,孔子旭,赵振兵.隔级融合特征金字塔与CornerNet相结合的小目标检测[J].智能系统学报,2021,16(1):108-116.[doi:10.11992/tis.202004033]
 ZHAO Wenqing,KONG Zixu,ZHAO Zhenbing.Small target detection based on a combination of feature pyramid and CornerNet[J].CAAI Transactions on Intelligent Systems,2021,16(1):108-116.[doi:10.11992/tis.202004033]
点击复制

隔级融合特征金字塔与CornerNet相结合的小目标检测

参考文献/References:
[1] 赵永强, 饶元, 董世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4):629-654
ZHAO Yongqiang, RAO Yuan, DONG Shipeng, et al. Survey on deep learning object detection[J]. Journal of image and graphics, 2020, 25(4):629-654
[2] 赵文清, 周震东, 翟永杰. 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15(2):310-316.
ZHAO Wenqing, ZHOU Zhendong, ZHAI Yongjie. SSD small target detection algorithm based on deconvolution and feature fusion[J]. CAAI transactions on intelligent systems, 2020, 15(2):310-316.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[4] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
[5] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:2961-2969.
[6] 段仲静, 李少波, 胡建军, 等. 深度学习目标检测方法及主流框架综述[J]. 激光与光电子学进展, 2020, 57(12):1-16.
DUAN Zhongjing, LI Shaobo, HU Jianjun,et al. Review of deep learning target detection methods and mainstream frameworks[J]. Progress in laser and optoelectronics, 2020, 57(12):1-16.
[7] LIU Wei, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779-788.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:2980-2988.
[10] 刘俊明, 孟卫华. 基于深度学习的单阶段目标检测算法研究综述[J]. 航空兵器, 2020, 27(3):44-53.
LIU Junming, MENG Weihua. Review of single-stage target detection algorithm based on deep learning[J]. AERO weapons, 2020, 27(3):44-53.
[11] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:2117-2125.
[12] 陈景明, 金杰, 王伟锋. 基于特征金字塔网络的改进算法[J]. 激光与光电子学进展, 2019, 56(21):165-170
CHEN Jingming, JIN Jie, WANG Weifeng. Improved algorithm based on characteristic pyramid network[J]. Laser and optoelectronics progress, 2019, 56(21):165-170
[13] LAW H, DENG Jia. CornerNet:detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany, 2018:734-750.
[14] NEWELL A, YANG Kaiyu, DENG Jia. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:483-499.
[15] 和超, 张印辉, 何自芬. 多尺度特征融合工件目标语义分割[J]. 中国图象图形学报, 2020, 25(3):476-485
HE Chao, ZHANG Yinhui, HE Zifen. Multi scale feature fusion for object semantic segmentation[J]. Journal of image and graphic, 2020, 25(3):476-485
[16] CAO Guimei, XIE Xuemei, YANG Wenzhe, et al. Feature-fused SSD:fast detection for small objects[C]//Proceedings of SPIE 10615, Ninth International Conference on Graphic and Image Processing. Qingdao, China, 2018:106151E.
[17] 鞠默然, 罗江宁, 王仲博, 等. 一种融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13):126-134.
JU Moran, LUO Jiangning, WANG Zhongbo, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta optica sinica, 2020, 40(13):126-134.
[18] 王慧玲, 綦小龙, 武港山. 基于深度卷积神经网络的目标检测技术的研究进展[J]. 计算机科学, 2018, 45(9):11-19
WANG Huiling, QI Xiaolong, WU Gangshan. Research progress of target detection technology based on deep convolution neural network[J]. Computer science, 2018, 45(9):11-19
[19] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS:fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea, 2019:9627-9636.
[20] 李晓光, 付陈平, 李晓莉, 等. 面向多尺度目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报, 2019, 31(7):1095-1101
LI Xiaoguang, FU Chenping, LI Xiaoli, et al. Improved faster R-CNN for multi-scale object detection[J]. Journal of computer-aided design and computer graphics, 2019, 31(7):1095-1101
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014:740-755.
[22] 李航, 朱明. 基于深度卷积神经网络的小目标检测算法[J]. 计算机工程与科学, 2020, 42(4):649-657
LI Hang, ZHU Ming. A small object detection algorithm based on deep convolutional neural network[J]. Computer engineering and science, 2020, 42(4):649-657
相似文献/References:
[1]赵文清,周震东,翟永杰.基于反卷积和特征融合的SSD小目标检测算法[J].智能系统学报,2020,15(2):310.[doi:10.11992/tis.201905035]
 ZHAO Wenqing,ZHOU Zhendong,ZHAI Yongjie.SSD small target detection algorithm based on deconvolution and feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15():310.[doi:10.11992/tis.201905035]
[2]毛莺池,唐江红,王静,等.基于Faster R-CNN的多任务增强裂缝图像检测方法[J].智能系统学报,2021,16(2):286.[doi:10.11992/tis.201910004]
 MAO Yingchi,TANG Jianghong,WANG Jing,et al.Multi-task enhanced dam crack image detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2021,16():286.[doi:10.11992/tis.201910004]
[3]齐鹏宇,王洪元,张继,等.基于改进FCOS的拥挤行人检测算法[J].智能系统学报,2021,16(4):811.[doi:10.11992/tis.202010012]
 QI Pengyu,WANG Hongyuan,ZHANG Ji,et al.Crowded pedestrian detection algorithm based on improved FCOS[J].CAAI Transactions on Intelligent Systems,2021,16():811.[doi:10.11992/tis.202010012]
[4]李海丰,李纪霖,王怀超,等.复杂机场道面外来异物高精度实时检测算法[J].智能系统学报,2023,18(3):525.[doi:10.11992/tis.202110014]
 LI Haifeng,LI Jilin,WANG Huaichao,et al.High-precision real-time detection algorithm for foreign object debris on complex airport pavements[J].CAAI Transactions on Intelligent Systems,2023,18():525.[doi:10.11992/tis.202110014]
[5]何宇豪,易明发,周先存,等.基于改进的Yolov5的无人机图像小目标检测[J].智能系统学报,2024,19(3):635.[doi:10.11992/tis.202210032]
 HE Yuhao,YI Mingfa,ZHOU Xiancun,et al.UAV image small-target detection based on improved Yolov5[J].CAAI Transactions on Intelligent Systems,2024,19():635.[doi:10.11992/tis.202210032]

备注/Memo

收稿日期:2020-04-27。
基金项目:国家自然科学基金项目(61871182);中央高校基本科研业务费面上项目(2020MS153)
作者简介:赵文清,教授,主要研究方向为人工智能与图像处理,主持或参与国家自然科学基金、河北省自然科学基金以及省部级项目10余项,获河北省科技进步二等奖1项、河北省科技进步三等奖1项。发表学术论文30余篇,出版学术专著1部;孔子旭,硕士研究生,主要研究方向为深度学习和目标检测;赵振兵,副教授,主要研究方向为深度学习与计算机视觉,主持或参与国家自然科学基金、河北省自然科学基金、北京市自然科学基金以及省部级项目10余项,获河北省科技进步一等奖1项。发表学术论文20余篇,出版学术专著3部
通讯作者:赵文清. E-mail:jbzwq@126.com

更新日期/Last Update: 2021-02-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com