[1]姜峰,尹逊锋,衣淳植,等.利用肌电信号求解关节力矩的研究及应用综述[J].智能系统学报,2020,15(2):193-203.[doi:10.11992/tis.202001013]
 JIANG Feng,YIN Xunfeng,YI Chunzhi,et al.A review of the research and application of calculating joint torque by electromyography signals[J].CAAI Transactions on Intelligent Systems,2020,15(2):193-203.[doi:10.11992/tis.202001013]
点击复制

利用肌电信号求解关节力矩的研究及应用综述

参考文献/References:
[1] MATHEW A J, NUNDY M, CHANDRASHEKARAN N, et al. Wrestle while you learn: EMG as a teaching tool for undergraduate skeletal muscle physiology teaching[J]. Advances in physiology education, 2019, 43(4): 467-471.
[2] 孙全义, 陈雪丽, 李春梅, 等. 颏下肌群表面肌电信号评定脑卒中患者吞咽障碍的价值[J]. 广西医科大学学报, 2019, 36(7): 1104-1107
SUN Quanyi, CHEN Xueli, LI Cunmei, et al. The value of submental muscle surface electromyography signal for evaluating dysphagia in stroke patients[J]. Journal of Guangxi medical university, 2019, 36(7): 1104-1107
[3] 韩书娜, 刘昆磊, 吕杰. 康复锻炼用肌电控制机械手开发[J]. 机床与液压, 2019, 47(11): 48-52
HAN Shuna, LIU Kunlei, LV Jie. Development of myoelectric control manipulator for rehabilitative exercise[J]. Machine tool & hydraulics, 2019, 47(11): 48-52
[4] MANERO R B R, SHAFTI A, MICHAEL B, et al. Wearable embroidered muscle activity sensing device for the human upper leg[C]//Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Orlando, USA, 2016: 6062-6065.
[5] JACKSON R W, COLLINS S H. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons[J]. Journal of applied physiology, 2015, 119(5): 541-557.
[6] MULAS M, FOLGHERAITER M, GINI G. An EMG-controlled exoskeleton for hand rehabilitation[C]//Proceedings of 9th International Conference on Rehabilitation Robotics. Chicago, USA, 2005.
[7] AMBROSINI E, FERRANTE S, ZAJC J, et al. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: first results of the RETRAINER project[C]//Proceedings of 2017 International Conference on Rehabilitation Robotics. London, UK, 2017.
[8] LLOYD D G, BUCHANAN T S. A model of load sharing between muscles and soft tissues at the human knee during static tasks[J]. Journal of biomechanical engineering, 1996, 118(3): 367-376.
[9] MCGILL S M. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending[J]. Journal of biomechanics, 1992, 25(4): 395-414.
[10] 郭伟, 杨丛为, 邓静, 等. 外骨骼机器人系统中人体下肢关节力矩动态解算[J]. 机械与电子, 2015(10): 71-75
GUO Wei, YANG Cong Wei, DENG Jing, et al. Dynamic solution of the lower extremity joint torques in man-machine system of lower extremity exoskeleton[J]. Machinery & electronics, 2015(10): 71-75
[11] SONG Jialei, ZHONG Yong, LUO Haoxiang, et al. Hydrodynamics of larval fish quick turning: a computational study[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2018, 232(14): 2515-2523.
[12] ZAJAC F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Critical reviews in biomedical engineering, 1989, 17(4): 359-411.
[13] HUXLEY A F. Muscle structure and theories of contraction[J]. Progress in biophysics and biophysical chemistry, 1957, 7: 255-318.
[14] HUXLEY A F, SIMMONS R M. Proposed mechanism of force generation in striated muscle[J]. Nature, 1971, 233(5321): 533-538.
[15] ZAHALAK G I. A comparison of the mechanical behavior of the cat soleus muscle with a distribution-moment model[J]. Journal of biomechanical engineering, 1986, 108(2): 131-140.
[16] ZAHALAK G I. The two-state cross-bridge model of muscle is an asymptotic limit of multi-state models[J]. Journal of theoretical biology, 2000, 204(1): 67-82.
[17] HILL A V. The heat of shortening and the dynamic constants of muscle[J]. Proceedings of the royal society B: biological sciences, 1938, 126(843): 136-195.
[18] HAN Jianda, DING Qichuan, XIONG Anbin, et al. A state-space EMG model for the estimation of continuous joint movements[J]. IEEE transactions on industrial electronics, 2015, 62(7): 4267-4275.
[19] BUCHANAN T S, LLOYD D G, MANAL K, et al. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command[J]. Journal of applied biomechanics, 2004, 20(4): 367-395.
[20] MURRAY W M, BUCHANAN T S, DELP S L. The isometric functional capacity of muscles that cross the elbow[J]. Journal of biomechanics, 2000, 33(8): 943-952.
[21] CROUCH D L, HUANG He. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals[C]//Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy, 2015.
[22] LLOYD D G, BESIER T F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo[J]. Journal of biomechanics, 2003, 36(6): 765-776.
[23] MANAL K, GONZALEZ R V, LLOYD D G, et al. A real-time EMG-driven virtual arm[J]. Computers in biology and medicine, 2002, 32(1): 25-36.
[24] DESPLENTER T, TREJOS A L. Evaluating muscle activation models for elbow motion estimation[J]. Sensors, 2018, 18(4): 1004.
[25] CAVALLARO E E, ROSEN J, PERRY J C, et al. Real-time myoprocessors for a neural controlled powered exoskeleton arm[J]. IEEE transactions on biomedical engineering, 2006, 53(11): 2387-2396.
[26] MANAL K, BUCHANAN T S. A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms[J]. Journal of biomechanics, 2003, 36(8): 1197-1202.
[27] CHADWICK E K, BLANA D, KIRSCH R F, et al. Real-time simulation of three-dimensional shoulder girdle and arm dynamics[J]. IEEE transactions on biomedical engineering, 2014, 61(7): 1947-1956.
[28] RENGIFO C, AOUSTIN Y, PLESTAN F, et al. Distribution of forces between synergistics and antagonistics muscles using an optimization criterion depending on muscle contraction behavior[J]. Journal of biomechanical engineering, 2010, 132(4): 041009.
[29] CHADWICK E K, BLANA D, VAN DEN BOGERT A J, et al. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements[J]. IEEE transactions on biomedical engineering, 2009, 56(4): 941-948.
[30] THELEN D G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults[J]. Journal of biomechanical engineering, 2003, 125(1): 70-77.
[31] SCHUTTE L M, RODGERS M M, ZAJAC F E, et al. Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model[J]. IEEE transactions on rehabilitation engineering, 1993, 1(2): 109-125.
[32] HERZOG W. History dependence of force production in skeletal muscle: a proposal for mechanisms[J]. Journal of electromyography and kinesiology, 1998, 8(2): 111-117.
[33] GORDON A M, HUXLEY A F, JULIAN F J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres[J]. The journal of physiology, 1966, 184(1): 170-192.
[34] DING Qichan, XIONG Anbin, ZHAO Xingang, et al. A novel EMG-driven state space model for the estimation of continuous joint movements[C]//Proceedings of 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage, USA, 2011.
[35] CROUCH D L, HUANG H. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task[J]. Journal of neural engineering, 2017, 14(3): 036008.
[36] AO Di, SONG Rong, GAO Jinwu. Movement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robot[J]. IEEE transactions on neural systems and rehabilitation engineering, 2017, 25(8): 1125-1134.
[37] FORCINITO M, EPSTEIN M, HERZOG W. Can a rheological muscle model predict force depression/enhancement?[J]. Journal of biomechanics, 1998, 31(12): 1093-1099.
[38] KAWAKAMI Y, ICHINOSE Y, FUKUNAGA T. Architectural and functional features of human, triceps surae muscles during contraction[J]. Journal of applied physiology, 1998, 85(2): 398-404.
[39] WOITTIEZ R D, HUIJING P A, BOOM H B K, et al. A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles[J]. Journal of morphology, 1984, 182(1): 95-113.
[40] SCOTT S H, WINTER D A. A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force[J]. Journal of biomechanics, 1991, 24(2): 163-167.
[41] MENEGALDO L L, DE TOLEDO FLEURY A, WEBER H I. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model[J]. Journal of biomechanics, 2004, 37(9): 1447-1453.
[42] DELP S L, LOAN J P. A graphics-based software system to develop and analyze models of musculoskeletal structures[J]. Computers in biology and medicine, 1995, 25(1): 21-34.
[43] DELP S L, LOAN J P, HOY M G, et al. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures[J]. IEEE transactions on biomedical engineering, 1990, 37(8): 757-767.
[44] DE GROOTE F, VAN CAMPEN A, JONKERS I, et al. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors[J]. Journal of biomechanics, 2010, 43(10): 1876-1883.
[45] REDL C, GFOEHLER M, PANDY M G. Sensitivity of muscle force estimates to variations in muscle-tendon properties[J]. Human movement science, 2007, 26(2): 306-319.
[46] AI Qingsong, DING Bo, LIU Quan, et al. A subject-specific EMG-driven musculoskeletal model for applications in lower-limb rehabilitation robotics[J]. International journal of humanoid robotics, 2016, 13(3): 1650005.
[47] MENEGALDO L L, OLIVEIRA L F. The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driven models[J]. Multibody system dynamics, 2012, 28(1/2): 21-36.
[48] QASHQAI A, EHSANI H, ROSTAMI M. A hill-based EMG-driven model to estimate elbow torque during flexion and extention[C]//Proceedings of 2015 22nd Iranian Conference on Biomedical Engineering. Tehran, Iran, 2015.
[49] LI Kexiang, ZHANG Jianhua, LIU Xuan, et al. Estimation of continuous elbow joint movement based on human physiological structure[J]. Biomedical engineering online, 2019, 18(1): 31.
[50] PAU J W L, SAINI H, XIE S S Q, et al. An EMG-driven neuromuscular interface for human elbow joint[C]//Proceedings of 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo, Japan, 2010.
[51] HOLZBAUR K R S, MURRAY W M, DELP S L. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control[J]. Annals of biomedical engineering, 2005, 33(6): 829-840.
[52] SON J, HWANG S J, LEE J S, et al. Optimization of muscle parameters to predict ankle joint moments[C]//Proceedings of 6th World Congress of Biomechanics. Singapore, 2010.
[53] BUONGIORNO D, BARSOTTI M, BARONE F, et al. A linear approach to optimize an EMG-Driven Neuromusculoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints[J]. Frontiers in neurorobotics, 2018, 12: 74.
[54] MICHALEWICZ Z, NAZHIYATH G. Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints[C]//Proceedings of 1995 IEEE International Conference on Evolutionary Computation. Perth, WA, Australia, 1995.
[55] SON J, KIM S, AHN S, et al. Determination of the dynamic knee joint range of motion during leg extension exercise using an EMG-driven model[J]. International journal of precision engineering and manufacturing, 2012, 13(1): 117-123.
[56] AN K N, HUI F C, MORREY B F, et al. Muscles across the elbow joint: a biomechanical analysis[J]. Journal of biomechanics, 1981, 14(10): 659-661, 663-669.
[57] JACOBSON M D, RAAB R, FAZELI B M, et al. Architectural design of the human intrinsic hand muscles[J]. The journal of hand surgery, 1992, 17(5): 804-809.
[58] LANGENDERFER J, JERABEK S A, THANGAMANI V B, et al. Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length[J]. Clinical biomechanics, 2004, 19(7): 664-670.
[59] LIEBER R L, FAZELI B M, BOTTE M J. Architecture of selected wrist flexor and extensor muscles[J]. The journal of hand surgery, 1990, 15(2): 244-250.
[60] LIEBER R L, JACOBSON M D, FAZELI B M, et al. Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer[J]. The journal of hand surgery, 1992, 17(5): 787-798.
[61] JIANG Ning, ENGLEHART K B, PARKER P A. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal[J]. IEEE transactions on biomedical engineering, 2009, 56(4): 1070-1080.
[62] DOWLING D J. The use of electromyography for the noninvasive prediction of muscle forces[J]. Sports medicine, 1997, 24(2): 82-96.
[63] RASCHKE U, CHAFFIN D B. Support for a linear length-tension relation of the torso extensor muscles: an investigation of the length and velocity EMG-force relationships[J]. Journal of biomechanics, 1996, 29(12): 1597-1604.
[64] ROSEN J, BRAND M, FUCHS M B, et al. A myosignal-based powered exoskeleton system[J]. IEEE transactions on systems, man, and cybernetics-Part A: systems and humans, 2001, 31(3): 210-222.
[65] MANAL K, GRAVARE-SILBERNAGEL K, BUCHANAN T S. A real-time EMG-driven musculoskeletal model of the ankle[J]. Multibody system dynamics, 2012, 28(1/2): 169-180.
[66] ROSEN J, FUCHS M B, ARCAN M. Performances of hill-type and neural network muscle models—toward a myosignal-based exoskeleton[J]. Computers and biomedical research, 1999, 32(5): 415-439.
[67] MENEGALDO L L, OLIVEIRA L F. An EMG-driven model to evaluate quadriceps strengthening after an isokinetic training[J]. Procedia IUTAM, 2011, 2: 131-141.
[68] MENEGALDO L L. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters[J]. Biological cybernetics, 2017, 111(5/6): 335-346.
[69] MA Ye, XIE Shengquan, ZHANG Yanxin. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots[J]. Computers in biology and medicine, 2016, 70: 88-98.
[70] WANG He, ZHANG Xiaodong, CHEN Jiangcheng, et al. Realization of human-computer interaction of lower limbs rehabilitation robot based on sEMG[C]//Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation. Hong Kong, China, 2014: 491-495.
[71] SHAO Qi, BASSETT D N, MANAL K, et al. An EMG-driven model to estimate muscle forces and joint moments in stroke patients[J]. Computers in biology and medicine, 2009, 39(12): 1083-1088.
[72] PIZZOLATO C, LLOYD D G, SARTORI M, et al. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks[J]. Journal of biomechanics, 2015, 48(14): 3929-3936.
[73] ZHUANG Yu, YAO Shaowei, MA Chenming, et al. Admittance control based on EMG-driven musculoskeletal model improves the human-robot synchronization[J]. IEEE transactions on industrial informatics, 2018, 15(2): 1211-1218.
[74] LLOYD D G, BUCHANAN T S. Strategies of muscular support of varus and valgus isometric loads at the human knee[J]. Journal of biomechanics, 2001, 34(10): 1257-1267.
[75] OLNEY S J, WINTER D A. Predictions of knee and ankle moments of force in walking from EMG and kinematic data[J]. Journal of biomechanics, 1985, 18(1): 9-20.
[76] RAJAGOPAL A, DEMBIA C L, DEMERS M S, et al. Full-body musculoskeletal model for muscle-driven simulation of human gait[J]. IEEE transactions on biomedical engineering, 2016, 63(10): 2068-2079.
[77] HOANG H X, DIAMOND L E, LLOYD D G, et al. A calibrated EMG-informed neuromusculoskeletal model can appropriately account for muscle co-contraction in the estimation of hip joint contact forces in people with hip osteoarthritis[J]. Journal of biomechanics, 2019, 83: 134-142.
[78] BUCHANAN T S, MONIZ M J, DEWALD J P A, et al. Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method[J]. Journal of biomechanics, 1993, 26(4/5): 547-560.
[79] VAN DEN BOGERT A J, BLANA D, HEINRICH D. Implicit methods for efficient musculoskeletal simulation and optimal control[J]. Procedia IUTAM, 2011, 2: 297-316.
[80] BUENO D R, MONTANO L. Neuromusculoskeletal model self-calibration for on-line sequential Bayesian moment estimation[J]. Journal of neural engineering, 2017, 14(2): 026011.
相似文献/References:
[1]孙玉波,李海涛,舒智林,等.基于外侧腓肠肌sEMG的帕金森神经调控步态量化测评方法[J].智能系统学报,2022,17(1):98.[doi:10.11992/tis.202103045]
 SUN Yubo,LI Haitao,SHU Zhilin,et al.A quantitative gait assessment method based on lateral gastrocnemius sEMG for neuromodulation of Parkinson’s disease[J].CAAI Transactions on Intelligent Systems,2022,17():98.[doi:10.11992/tis.202103045]

备注/Memo

收稿日期:2020-01-08。
基金项目:国家重点研发计划项目(2018YFC0806800, 2018YFC0832105)
作者简介:姜峰,教授,IEEE哈尔滨信号处理分会主席、美国Princeton大学电子工程系访问学者、核九院特聘专家、黑龙江VR联盟首席专家,主要研究方向为计算机视觉、模式识别、视频图像处理、下肢外骨骼机器人。近5年主持国家自然科学基金面上项目、国家自然科学基金青年项目、军委科技委项目、国际合作项目等10余项;参与国家重点研发计划、国家自然科学基金重点项目、国家973计划、863计划、国际合作项目20项。获军队科技进步二等奖(排名第二)、黑龙江省高校科技奖一等奖。出版中文、英文专著和教材3部。发表学术论文100余篇;尹逊锋,硕士研究生,主要研究方向为下肢外骨骼机器人、人体运动学、生物电信号分析;衣淳植,博士研究生,主要研究方向为下肢外骨骼机器人、人机协作、人体运动学、惯性导航、仿生学
通讯作者:尹逊锋.E-mail:mr_yinxf@hit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com