[1]林椹尠,张梦凯,吴成茂.利用残差密集网络的运动模糊复原方法[J].智能系统学报,2021,16(3):442-448.[doi:10.11992/tis.201912002]
 LIN Zhenxian,ZHANG Mengkai,WU Chengmao.Image restoration with residual dense network[J].CAAI Transactions on Intelligent Systems,2021,16(3):442-448.[doi:10.11992/tis.201912002]
点击复制

利用残差密集网络的运动模糊复原方法

参考文献/References:
[1] 程俊廷, 左旺孟. 快速非均匀模糊图像的盲复原模型[J]. 黑龙江科技大学学报, 2017, 27(2):196-199
CHENG Junting, ZUO Wangmeng. Fast blind deblurring models for restoration of non-uniform blur images[J]. Journal of Heilongjiang University of Science and Technology, 2017, 27(2):196-199
[2] BANHAM M R, KATSAGGELOS A K. Digital image restoration[J]. IEEE signal processing magazine, 1997, 14(2):24-41.
[3] ZHOU Y T, CHELLAPPA R, VAID A, et al. Image restoration using a neural network[J]. IEEE transactions on acoustics, speech, and signal processing, 1988, 36(7):1141-1151.
[4] JAIN V, SEUNG S. Natural image denoising with convolutional networks[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2009:769-776.
[5] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:2261-2269.
[6] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE transactions on image processing, 2017, 26(7):3142-3155.
[7] LIU Ding, WEN Bihan, FAN Yuchen, et al. Non-local recurrent network for image restoration[C]//32nd Conference on Neural Information Processing Systems. Montréal, Canada, 2018:1673-1682.
[8] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019:1712-1722.
[9] CHA S, MOON T. Fully convolutional pixel adaptive image denoiser[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019:4159-4168.
[10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:2672-2680.
[11] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN:blind motion deblurring using conditional adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:8183-8192.
[12] WANG M, LI H, LI F. Generative adversarial network based on resnet for conditional image restoration[EB/OL].[2021?06?07] https://arxiv.org/abs/1707.04881.
[13] ZHOU H, SUN J, YACOOB Y, et al. Label denoising adversarial network (LDAN) for inverse lighting of faces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:6238-6247.
[14] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:2472-2481.
[15] SAJJADI M S M, SCH?LKOPF B, HIRSCH M. EnhanceNet:single image super-resolution through automated texture synthesis[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:4501-4510.
[16] ADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2021?06?07] https://arxiv.org/abs/1511.06434.
[17] ZHAO Hang, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE transactions on computational imaging, 2017, 3(1):47-57.
[18] WHYTE O, SIVIC J, ZISSERMAN A, et al. Non-uniform deblurring for shaken images[J]. International journal of computer vision, 2012, 98(2):168-186.
[19] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:257-265.
[20] BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada, 2009:41-48.
[21] 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12):1758-1763
TONG Yubing, ZHANG Qishan, QI Yunping. Image quality assessing by combining PSNR with SSIM[J]. Journal of image and graphics, 2006, 11(12):1758-1763
[22] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4):600-612.
[23] TAO Xin, GAO Hongyun, SHEN Xiaoyong, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:8174-8182.
相似文献/References:
[1]李庆武,蔡艳梅,徐立中.基于分块分类的智能视频监控背景更新算法[J].智能系统学报,2010,5(3):272.
 LI Qing-wu,CAI Yan-mei,XU Li-zhong.Background update algorithm based on blocks classification forintelligent video surveillance[J].CAAI Transactions on Intelligent Systems,2010,5():272.
[2]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报,2012,7(2):102.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,7():102.
[3]王锦榕,袁学海,刘增良.基于图像处理技术的瞳孔和角膜反射中心提取算法[J].智能系统学报,2012,7(5):423.
 WANG Jinrong,YUAN Xuehai,LIU Zengliang.An extraction method of pupil and corneal reflection centers based on image processing technology[J].CAAI Transactions on Intelligent Systems,2012,7():423.
[4]傅博,姜勇,王洪光,等.输电线路巡检图像智能诊断系统[J].智能系统学报,2016,11(1):70.[doi:10.11992/tis.201503043]
 FU Bo,JIANG Yong,WANG Hongguang,et al.Intelligent diagnosis system for patrol check images of power transmission lines[J].CAAI Transactions on Intelligent Systems,2016,11():70.[doi:10.11992/tis.201503043]
[5]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11():241.[doi:10.11992/tis.201509017]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11():608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12():279.[doi:10.11992/tis.201606037]
[8]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(5):729.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12():729.[doi:10.11992/tis.201706018]
[9]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[10]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14():186.[doi:10.11992/tis.201805002]

备注/Memo

收稿日期:2019-12-02。
基金项目:国家自然科学基金项目(61671377)
作者简介:林椹尠,教授,博士,主要研究方向为基于小波理论的图像处理。发表学术论文30余篇;张梦凯,硕士研究生,主要研究方向为图像处理;吴成茂,高级工程师,主要研究方向为模式分析与智能信息处理、图像处理与信息安全。发表学术论文200余篇
通讯作者:张梦凯.E-maili:zmkdyx@163.com

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com