[1]陆剑锋,郭茂祖,张昱,等.基于时空约束密度聚类的停留点识别方法[J].智能系统学报,2020,15(1):59-66.[doi:10.11992/tis.201910026]
 LU Jianfeng,GUO Maozu,ZHANG Yu,et al.Stay point recognition method based on spatio-temporal constraint density clustering[J].CAAI Transactions on Intelligent Systems,2020,15(1):59-66.[doi:10.11992/tis.201910026]
点击复制

基于时空约束密度聚类的停留点识别方法

参考文献/References:
[1] 吕志娟. 基于Lifelog数据的个人轨迹模式挖掘算法的研究与应用[D]. 沈阳: 东北大学, 2015: 20–30.
LYU Zhijuan. Research and application of personal trajectory pattern mining algorithm based on Lifelog data[D]. Shenyang: Northeastern University, 2015: 20–30.
[2] JIANG Renhe, ZHAO Jing, DONG Tingting, et al. A density-based approach for mining movement patterns from semantic trajectories[C]//TENCON 2015-2015 IEEE Region 10 Conference. Macao, China, 2015.
[3] 张文元, 谈国新, 朱相舟. 停留点空间聚类在景区热点分析中的应用[J]. 计算机工程与应用, 2018, 54(4): 263–270
ZHANG Wenyuan, TAN Guoxin, ZHU Xiangzhou. Application of stay points spatial clustering in hot scenic spots analysis[J]. Computer engineering and applications, 2018, 54(4): 263–270
[4] 杨震, 王红军. 基于Adaboost-Markov模型的移动用户位置预测方法[J]. 计算机应用, 2019, 39(3): 675–680
YANG Zhen, WANG Hongjun. Location prediction method of mobile user based on Adaboost-Markov model[J]. Journal of computer applications, 2019, 39(3): 675–680
[5] 石陆魁, 张延茹, 张欣. 基于时空模式的轨迹数据聚类算法[J]. 计算机应用, 2017, 37(3): 854–859, 895
SHI Lukui, ZHANG Yanru, ZHANG Xin. Trajectory data clustering algorithm based on spatiotemporal pattern[J]. Journal of computer applications, 2017, 37(3): 854–859, 895
[6] FU Zhongliang, TIAN Zongshun, XU Yanqing, et al. A two-step clustering approach to extract locations from individual GPS trajectory data[J]. ISPRS international journal of geo-information, 2016, 5(10): 166.
[7] XIANG Longgang, GAO Meng, WU Tao. Extracting stops from noisy trajectories: a sequence oriented clustering approach[J]. ISPRS international journal of geo-information, 2016, 5(3): 29.
[8] GONG Lei, SATO H, YAMAMOTO T, et al. Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines[J]. Journal of modern transportation, 2015, 23(3): 202–213.
[9] GONG Lei, YAMAMOTO T, MORIKAWA T. Identification of activity stop locations in GPS trajectories by DBSCAN-TE method combined with support vector machines[J]. Transportation research procedia, 2018, 32: 146–154.
[10] GINGERICH K, MAOH H, ANDERSON W. Classifying the purpose of stopped truck events: an application of entropy to GPS data[J]. Transportation research part C: emerging technologies, 2016, 64: 17–27.
[11] 张鹏. 基于蜂窝网络数据的用户移动性分析和兴趣区挖掘[D]. 北京: 北京邮电大学, 2018: 31–52.
ZHANG Peng. User mobility research and interest region mining based on cellular networks traffic[D]. Beijing: Beijing University of Posts and Telecommunications, 2018: 31–52.
[12] 向隆刚, 邵晓天. 载体轨迹停留信息提取的核密度法及其可视化[J]. 测绘学报, 2016, 45(9): 1122–1131
XIANG Longgang, SHAO Xiaotian. Visualization and extraction of trajectory stops based on kernel-density[J]. Acta geodaetica et cartographica sinica, 2016, 45(9): 1122–1131
[13] LIAO Lin, FOX D, KAUTZ H. Extracting places and activities from GPS traces using hierarchical conditional random fields[J]. International journal of robotics research, 2007, 26(1): 119–134.
[14] 李毓瑞, 陈红梅, 王丽珍, 等. 基于密度的停留点识别方法[J]. 大数据, 2018, 4(5): 80–93
LI Yurui, CHEN Hongmei, WANG Lizhen, et al. Stay point identification based on density[J]. Big data research, 2018, 4(5): 80–93
[15] 杜润强. 基于手机轨迹数据的用户出行及停驻点识别系统研究[D]. 北京: 北京工业大学, 2014: 35–45.
DU Runqiang. The research on users’ movements and stay point identification based on mobile data[D]. Beijing: Beijing University of Technology, 2014: 35–45.
[16] HERDER E, SIEHNDEL P, KAWASE R. Predicting user locations and trajectories[M]//DIMITROVA V, KUFLIK T, CHIN D, et al. User Modeling, Adaptation, and Personalization. Cham: Springer, 2014: 86–97.
[17] DAMIANI M L, GüTING R H. Semantic trajectories and beyond[C]//Proceedings of 2014 IEEE 15th International Conference on Mobile Data Management. Brisbane, Australia, 2014.
[18] KHOSHAHVAL S, FARNAGHI M, TALEAI M. Spatio-temporal pattern mining on trajectory data using ARM[J]. International archives of the photogrammetry, remote sensing and spatial information sciences, 2017, XLⅡ-4/W4: 395–399.
[19] Sussex-Huawei locomotion dataset[EB/OL]. http://www.shl-dataset.org/download/.
[20] ZHENG Yu. Trajectory data mining: an overview[J]. ACM transactions on intelligent systems and technology, 2015, 6(3): 29–36.
相似文献/References:
[1]周治平,王杰锋,朱书伟,等.一种改进的自适应快速AF-DBSCAN聚类算法[J].智能系统学报,2016,11(1):93.[doi:10.11992/tis.201410021]
 ZHOU Zhiping,WANG Jiefeng,ZHU Shuwei,et al.An improved adaptive and fast AF-DBSCAN clustering algorithm[J].CAAI Transactions on Intelligent Systems,2016,11():93.[doi:10.11992/tis.201410021]
[2]郭茂祖,邵首飞,赵玲玲,等.基于时空周期模式挖掘的活动语义识别方法[J].智能系统学报,2021,16(1):162.[doi:10.11992/tis.202012035]
 GUO Maozu,SHAO Shoufei,ZHAO Lingling,et al.Active semantic recognition method based on spatial-temporal period pattern mining[J].CAAI Transactions on Intelligent Systems,2021,16():162.[doi:10.11992/tis.202012035]

备注/Memo

收稿日期:2019-10-31。
基金项目:国家自然科学基金项目(61871020,61502117,61305013);北京市教委科技计划重点项目(KZ201810016019);北京市属高校高水平创新团队建设计划项目(IDHT20190506);国家重点研发计划项目(2016YFC0600901)
作者简介:陆剑锋,硕士研究生,主要研究方向为机器学习、智慧城市;郭茂祖,教授,博士生导师,主要研究方向为机器学习、智慧城市、生物信息学。主持和参与国家自然科学基金面上项目、北京市属高校高水平创新团队建设计划项目和北京市教委科技计划重点项目等。曾获得教育部高等学校科学研究优秀成果自然科学二等奖、省科技进步二等奖等。发表学术论文200余篇;赵玲玲,讲师,博士,主要研究方向为城市计算、生物信息学。主持和参与多项国家自然科学基金项目。发展学术论文50余篇。
通讯作者:赵玲玲.E-mail:zhaoll@hit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com