[1]刘冰,李瑞麟,封举富.深度度量学习综述[J].智能系统学报,2019,14(6):1064-1072.[doi:10.11992/tis.201906045]
 LIU Bing,LI Ruilin,FENG Jufu.A brief introduction to deep metric learning[J].CAAI Transactions on Intelligent Systems,2019,14(6):1064-1072.[doi:10.11992/tis.201906045]
点击复制

深度度量学习综述

参考文献/References:
[1] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning, with application to clustering with side-information[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, USA, 2002:521-528.
[2] LOWE D G. Similarity metric learning for a variable-kernel classifier[J]. Neural computation, 1995, 7(1):72-85.
[3] COVER T M, HART P. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1):21-27.
[4] SUáREZ J L, GARCíA S, HERRERA F. A tutorial on distance metric learning:mathematical foundations, algorithms and software[J]. arXiv preprint arXiv:1812.05944, 2018.
[5] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of machine learning research, 2009, 10:207-244.
[6] GOLDBERGER J, ROWEIS S, HINTON G, et al. Neighbourhood components analysis[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2004:513-520.
[7] VAN DER MAATEN L, POSTMA E, VAN DEN HERIK J. Dimensionality reduction:a comparative[J]. Journal of machine learning research, 2009, 10:66-71.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012:1097-1105.
[9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[10] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1-9.
[11] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:770-778.
[12] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:4700-4708.
[13] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:7132-7141.
[14] CHECHIK G, SHARMA V, SHALIT U, et al. Large scale online learning of image similarity through ranking[J]. Journal of machine learning research, 2010, 11:1109-1135.
[15] SOHN K. Improved deep metric learning with multi-class n-pair loss objective[C]//Proceedings of the 39th Conference on Neural Information Processing Systems. Barcelona, Spain, 2016:1857-1865.
[16] MOVSHOVITZ-ATTIAS Y, TOSHEV A, LEUNG T K, et al. No fuss distance metric learning using proxies[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:360-368.
[17] HERSHEY J R, CHEN Zhuo, LE ROUX J, et al. Deep clustering:Discriminative embeddings for segmentation and separation[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, China, 2016:31-35.
[18] SONG H O, XIANG Yu, JEGELKA S, et al. Deep metric learning via lifted structured feature embedding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:4004-4012.
[19] SENER O, SONG H O, SAXENA A, et al. Learning transferrable representations for unsupervised domain adaptation[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain, 2016:2110-2118.
[20] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a "siamese" time delay neural network[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver, USA, 1993:737-744.
[21] CHOY C B, GWAK J, SAVARESE S, et al. Universal correspondence network[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain, 2016:2414-2422.
[22] PRABHU Y, VARMA M. FastXML:A fast, accurate and stable tree-classifier for extreme multi-label learning[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014:263-272.
[23] YEN I E H, HUANG Xiangru, ZHONG Kai, et al. PD-sparse:a primal and dual sparse approach to extreme multiclass and multilabel classification[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, USA, 2016:3069-3077.
[24] CHOROMANSKA A, AGARWAL A, LANGFORD J. Extreme multi class classification[C]//Neural Information Processing Systems Conference. Lake Tahoe, USA, 2013.
[25] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:815-823.
[26] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, 2:1735-1742.
[27] ZHAI A, WU Haoyu. Making classification competitive for deep metric learning[J]. arXiv preprint arXiv:1811.12649, 2018.
[28] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
[29] ZHANG Xu, YU F X, KARAMAN S, et al. Heated-up softmax embedding[J]. arXiv preprint arXiv:1809.04157, 2018.
[30] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:539-546
[31] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
[32] DONOHO D L, GRIMES C E. Hessian eigenmaps:Locally linear embedding techniques for high-dimensional data[J]. Proceedings of the national academy of sciences of the United States of America, 2003, 100(10):5591-5596.
[33] JOLLIFFE I T. Principal component analysis[M]. Berlin:Springer, 2011.
[34] NOROUZI M, FLEET D J, SALAKHUTDINOV R. Hamming distance metric learning[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012:1061-1069.
[35] CUI Yin, ZHOU Feng, LIN Yuanqing, et al. Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:1153-1162.
[36] MISHCHUK A, MISHKIN D, RADENOVIC F, et al. Working hard to know your neighbor’s margins:Local descriptor learning loss[C]//Advances in Neural Information Processing Systems. Long Beach, USA, 2017:4826-4837.
[37] HARWOOD B, KUMAR B G, CARNEIRO G, et al. Smart mining for deep metric learning[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:2821-2829.
[38] YUAN Yuhui, YANG Kuiyuan, ZHANG Chao. Hard-aware deeply cascaded embedding[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:814-823.
[39] WU Chaoyuan, MANMATHA R, SMOLA A J, et al. Sampling matters in deep embedding learning[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:2840-2848.
[40] USTINOVA E, LEMPITSKY V. Learning deep embeddings with histogram loss[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain, 2016:4170-4178.
[41] LIU Hongye, TIAN Yonghong, WANG Yaowei, et al. Deep relative distance learning:Tell the difference between similar vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2167-2175.
[42] LAW M T, URTASUN R, ZEMEL R S. Deep spectral clustering learning[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017:1985-1994.
[43] FUKUNAGA K, NARENDRA P M. A branch and bound algorithm for computing k-nearest neighbors[J]. IEEE transactions on computers, 1975, C-24(7):750-753.
[44] WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:499-515.
[45] SONG H O, JEGELKA S, RATHOD V, et al. Deep metric learning via facility location[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:5382-5390.
[46] BELL S, BALA K. Learning visual similarity for product design with convolutional neural networks[J]. ACM transactions on graphics (TOG), 2015, 34(4):98.
[47] KAUFMAN L, ROUSSEEUW P J, DODGE Y. Clustering by Means of Medoids[M]//Dodge Y. Statistical Data Analysis Based on the L1-Norm and Related Methods. North-Holland:Elsevier, 1987.
[48] LIN Hui, BILMES J A. Learning mixtures of submodular shells with application to document summarization[C]//Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence. Catalina Island, USA, 2012:479-490.
[49] TSCHIATSCHEK S, IYER R K, WEI Haochen, et al. Learning mixtures of submodular functions for image collection summarization[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:1413-1421.
[50] EMERSON A E. Handbook of theoretical computer science[M]. Amsterdam:Elsevier, 1990.
[51] KNUTH D E. Postscript about NP-hard problems[J]. ACM SIGACT news, 1974, 6(2):15-16.
[52] MANNING C D, RAGHAVAN P, SCHüTZE H. Introduction to information retrieval[M]. New York:Cambridge University Press, 2008.
[53] IONESCU C, VANTZOS O, SMINCHISESCU C. Training deep networks with structured layers by matrix backpropagation[J]. arXiv preprint arXiv:1509.07838, 2015.
[54] WANG Xinshao, HUA Yang, KODIROV E, et al. Ranked list loss for deep metric learning[J]. arXiv preprint arXiv:1903.03238, 2019.
[55] SHARIF RAZAVIAN A, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf:an astounding baseline for recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, USA, 2014:806-813.
[56] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv preprint arXiv:1207.0580, 2012.
[57] SERMANET P, EIGEN D, ZHANG Xiang, et al. OverFeat:Integrated recognition, localization and detection using convolutional networks[J]. arXiv preprint arXiv:1312.6229, 2013.
[58] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1026-1034.
[59] TAIGMAN Y, Yang MING, RANZATO M A, et al. DeepFace:Closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1701-1708.
[60] SUN Yi, CHEN Yuheng, WANG Xiaogang, et al. Deep learning face representation by joint identification-verification[C]//Advances in Neural Information Processing Systems. Montreal, Quebec, Canada, 2014:1988-1996.
[61] SUN Yi, WANG Xiaogang, TANG Xiaoou. Deeply learned face representations are sparse, selective, and robust[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:2892-2900.
[62] WAN Li, ZEILER M, ZHANG Sixin, et al. Regularization of neural networks using DropConnect[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, GA, USA, 2013:1058-1066.
[63] DENG Jiankang, ZHOU Yuxiang, ZAFEIRIOU S. Marginal loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA, 2017:60-68.
[64] ZHANG Xiao, FANG Zhiyuan, WEN Yandong, et al. Range loss for deep face recognition with long-tailed training data[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:5409-5418.
[65] WANG Feng, CHENG Jian, LIU Weiyang, et al. Additive margin softmax for face verification[J]. IEEE signal processing letters, 2018, 25(7):926-930.
[66] CHEN Binghui, DENG Weihong, DU Junping. Noisy softmax:Improving the generalization ability of DCNN via postponing the early softmax saturation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:5372-5381.
[67] WAN Weitao, ZHONG Yuanyi, LI Tianpeng, et al. Rethinking feature distribution for loss functions in image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:9117-9126.
[68] QI Xianbiao, ZHANG Lei. Face recognition via centralized coordinate learning[J]. arXiv preprint arXiv:1801.05678, 2018.
[69] LIU Weiyang, WEN Yandong, YU Zhiding, et al. Sphereface:SphereFace:Deep hypersphere embedding for face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:212-220.
[70] WANG Hao, WANG Yitong, ZHOU Zheng, et al. CosFace:Large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:5265-5274.
[71] LIU Weiyang, WEN Yandong, YU Zhiding, et al. Large-Margin Softmax Loss for Convolutional Neural Networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA, 2016, 2(3):7.
[72] BUCILU? C, CARUANA R, NICULESCU-MIZIL A. Model compression[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA, 2006:535-541.
[73] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD Birds-200-2011 Dataset[R]. Computation & Neural Systems Technical Report, CNS-TR-2011-001, Pasadena, CA, USA:California Institute of Technology, 2011.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2019-06-24。
基金项目:国家自然科学基金重点项目(61333015).
作者简介:刘冰,女,1994年生,博士研究生,主要研究方向为深度学习、计算机视觉和生物特征识别;李瑞麟,男,1995年生,硕士研究生,主要研究方向为深度学习、计算机视觉和生物特征识别;封举富,男,1967年生,教授,博士生导师,主要研究方向为图像处理、模式识别、机器学习和生物特征识别。主持和参与国家自然科学基金、"十一五"国家科技支撑计划课题、973计划等项目多项。曾获中国高校科技二等奖、第一届亚洲计算机视觉国际会议优秀论文奖、北京大学安泰教师奖、北京大学大众电脑优秀奖、北京大学安泰项目奖等奖励多项。发表学术论文300余篇。
通讯作者:封举富.E-mail:fjf@cis.pku.edu.cn

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com