[1]裴小兵,孙志卫.改进区块遗传算法解决分布式车间调度问题[J].智能系统学报,2021,16(2):303-312.[doi:10.11992/tis.201906035]
PEI Xiaobing,SUN Zhiwei.Solving distributed-shop scheduling problems based on modified genetic algorithm[J].CAAI Transactions on Intelligent Systems,2021,16(2):303-312.[doi:10.11992/tis.201906035]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第2期
页码:
303-312
栏目:
学术论文—智能系统
出版日期:
2021-03-05
- Title:
-
Solving distributed-shop scheduling problems based on modified genetic algorithm
- 作者:
-
裴小兵, 孙志卫
-
天津理工大学 管理学院,天津 300384
- Author(s):
-
PEI Xiaobing, SUN Zhiwei
-
School of Management, Tianjin University of Technology, Tianjin 300384, China
-
- 关键词:
-
区块; 协同效应; 人工染色体; 分布式车间调度问题; 遗传算法; 基因重组; 概率矩阵; 组合优化
- Keywords:
-
block; synergistic effect; artificial chromosomes; distributed job shop scheduling problem; genetic algorithm; gene recombination; probability matrix; combinatorial optimization
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201906035
- 摘要:
-
针对分布式车间调度问题,提出了改进区块遗传算法(modified block-genetic algorithm,MBGA)。用NEH和随机性两种方式得到高质量的初始解,然后进行统计分析,选出精英染色体,建立工件?车间分配矩阵和工件?机器排序矩阵,挖掘联系紧密的基因链组成区块。构建基于区块的人工染色体,并进行基因重组,提高解的质量和多样性。通过算例与其他知名算法进行比较,结果表明该算法优于其他算法,并具有较好的稳定性和准确性。
- Abstract:
-
To solve distributed-job-shop scheduling problems, in this paper, we propose a modified block-genetic algorithm (MBGA). First, we initialize the solutions by combining NEH and random assignments. Then, by statistical analysis, we select an elite chromosome to establish a job-factory distribution matrix and job-machine sorting matrix to mine the block’s closely linked gene chain. Block-based artificial chromosomes are constructed and recombined to improve the quality and diversity of the solutions. The experimental results show that the performance of the proposed MBGA algorithm is superior to that of other well-known algorithms with respect to its stability and accuracy.
更新日期/Last Update:
2021-04-25