[1]张蕾,钱峰,赵姝,等.基于多粒度结构的网络表示学习[J].智能系统学报,2019,14(6):1233-1242.[doi:10.11992/tis.201905045]
 ZHANG Lei,QIAN Feng,ZHAO Shu,et al.Network representation learning based on multi-granularity structure[J].CAAI Transactions on Intelligent Systems,2019,14(6):1233-1242.[doi:10.11992/tis.201905045]
点击复制

基于多粒度结构的网络表示学习

参考文献/References:
[1] 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学:信息科学, 2017, 47(8):980-996 TU Cunchao, YANG Cheng, LIU Zhiyuan, et al. Network representation learning:an overview[J]. Scientia sinica informationis, 2017, 47(8):980-996
[2] SHEIKH N, KEFATO Z T, MONTRESOR M. Semi-supervised heterogeneous information network embedding for node classification using 1D-CNN[C]//Proceedings of the Fifth International Conference on Social Networks Analysis, Management and Security. Valencia, Spain, 2018:177-181.
[3] XU Guangluan, WANG Xiaoke, WANG Yang, et al. Edge-nodes representation neural machine for link prediction[J]. Algorithms, 2019, 12(1):12.
[4] HU Xuegang, HE Wei, LI Lei, et al. An efficient and fast algorithm for community detection based on node role analysis[J]. International journal of machine learning and cybernetics, 2019, 10(4):641-654.
[5] PEREDA M, ESTRADA E. Visualization and machine learning analysis of complex networks in hyperspherical space[J]. Pattern recognition, 2019, 86:320-331.
[6] SHI Chuan, HU Binbin, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE transactions on knowledge and data engineering, 2019, 31(2):357-370.
[7] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014:701-710.
[8] GROVER A, LESKOVEC J. node2vec:Scalable feature learning for networks[C]//Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016:855-864.
[9] CAO Shaosheng, LU Wei, XU Qiongkai. GraRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia, 2015:891-900.
[10] PEROZZI B, KULKARNI V, CHEN Haochen, et al. Don’t walk, Skip!:Online learning of multi-scale network embeddings[C]//Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. Sydney, Australia, 2017:258-265.
[11] CAO Shaosheng, LU Wei, XU Qiongkai. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016:1145-1152.
[12] RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. struc2vec:Learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada, 2017:385-394.
[13] WANG Xiao, CUI Peng, WANG Jing, et al. Community preserving network embedding[C]//Proceedings of the 31th AAAI Conference on Artificial Intelligence. San Francisco, California, USA, 2017:203-209.
[14] 方莲娣, 张燕平, 陈洁, 等. 基于三支决策的非重叠社团划分[J]. 智能系统学报, 2017, 12(3):293-300 FANG Liandi, ZHANG Yanping, CHEN Jie, et al. Three-way decision based on non-overlapping community division[J]. CAAI transactions on intelligent systems, 2017, 12(3):293-300
[15] DONNAT C, ZITNIK M, HALLAC D, et al. Learning structural node embeddings via diffusion wavelets[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK, 2018:1320-1329.
[16] CHEN Haochen, PEROZZI B, HU Hifan, et al. HARP:hierarchical representation learning for networks[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA, 2018:2127-2134.
[17] ZHANG Si, TONG Hanghang, XU Jiejun, et al. Graph convolutional networks:algorithms, applications and open challenges[C]//Proceedings of the 7th International Conference on Computational Data and Social Networks. Shanghai, China, 2018:79-91.
[18] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C/OL].[2019-01-28]. https://arxiv.org/pdf/1609.02907.pdf.
[19] LI Qimai, HAN Zhichao, WU Xiaoming. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA, 2018:3538-3545.
[20] 张燕平, 张铃, 吴涛. 不同粒度世界的描述法——商空间法[J]. 计算机学报, 2004, 27(3):328-333 ZHANG Yanping, ZHANG Ling, WU Tao. The representation of different granular worlds:a quotient space[J]. Chinese journal of computers, 2004, 27(3):328-333
[21] 赵姝, 柯望, 陈洁, 等. 基于聚类粒化的社团发现算法[J]. 计算机应用, 2014, 34(10):2812-2815 ZHAO Shu, KE Wang, CHEN Jie, et al. Community detection algorithm based on clustering granulation[J]. Journal of computer applications, 2014, 34(10):2812-2815
[22] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2003, 69(6):066133.
[23] 赵姝, 赵晖, 陈洁, 等. 基于社团结构的多粒度结构洞占据者发现及分析[J]. 智能系统学报, 2016, 11(3):343-351 ZHAO Shu, ZHAO Hui, CHEN Jie, et al. Recognition and analysis of structural hole spanner in multi-granularity based on community structure[J]. CAAI transactions on intelligent systems, 2016, 11(3):343-351
[24] KIPF T N, WELLING M. Variational graph auto-encoders[C/OL].[2019-01-28]. https://arxiv.org/pdf/1611.07308.pdf.
[25] MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information retrieval, 2000, 3(2):127-163.
[26] BREITKREUTZ B J, STARK C, REGULY T, et al. The BioGRID interaction database:2008 update[J]. Nucleic acids research, 2008, 36:D637-D640.
[27] GAO Hongchang, HUANG Heng. Self-paced network embedding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK, 2018:1406-1415.
[28] TANG Lei, LIU Huan. Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:817-826.
[29] FAWCETT T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8):861-874.
[30] FAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data:Taxonomy and empirical analysis[J]. IEEE transactions on emerging topics in computing, 2014, 2(3):267-279.
相似文献/References:
[1]常亮,张伟涛,古天龙,等.知识图谱的推荐系统综述[J].智能系统学报,2019,14(2):207.[doi:10.11992/tis.201805001]
 CHANG Liang,ZHANG Weitao,GU Tianlong,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14():207.[doi:10.11992/tis.201805001]
[2]张潇鲲,刘琰,陈静.引入外部词向量的文本信息网络表示学习[J].智能系统学报,2019,14(5):1056.[doi:10.11992/tis.201809037]
 ZHANG Xiaokun,LIU Yan,CHEN Jing.Representation learning using network embedding based on external word vectors[J].CAAI Transactions on Intelligent Systems,2019,14():1056.[doi:10.11992/tis.201809037]
[3]贾中浩,宾辰忠,古天龙,等.基于知识图谱和用户长短期偏好的个性化景点推荐[J].智能系统学报,2020,15(5):990.[doi:10.11992/tis.201904064]
 JIA Zhonghao,BIN Chenzhong,GU Tianlong,et al.Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences[J].CAAI Transactions on Intelligent Systems,2020,15():990.[doi:10.11992/tis.201904064]
[4]常新功,王金珏.基于图卷积集成的网络表示学习[J].智能系统学报,2022,17(3):547.[doi:10.11992/tis.202107048]
 CHANG Xingong,WANG Jinjue.Network representation learning using graph convolution ensemble[J].CAAI Transactions on Intelligent Systems,2022,17():547.[doi:10.11992/tis.202107048]
[5]武南南,郭泽浩,赵一鸣,等.应用双曲空间特征融合的姓名消歧方法研究[J].智能系统学报,2024,19(1):79.[doi:10.11992/tis.202209029]
 WU Nannan,GUO Zehao,ZHAO Yiming,et al.Name disambiguation method based on hyperbolic space feature fusion[J].CAAI Transactions on Intelligent Systems,2024,19():79.[doi:10.11992/tis.202209029]

备注/Memo

收稿日期:2019-05-23。
基金项目:国家自然科学基金项目(61876001,61602003,61673020);中国国防科技创新区规划项目(2017-0001-863015-0009);国家重点研究与发展项目(2017YFB1401903);安徽省自然科学基金项目(1508085MF113,1708085QF156).
作者简介:张蕾,女,1980年生,讲师,主要研究方向为数据挖掘、网络表示学习;钱峰,男,1978年生,讲师,主要研究方向为数据挖掘、网络表示学习;赵姝,女,1979年生,教授,博士生导师,博士,安徽省人工智能学会常务理事,安徽省计算机学会理事,中国人工智能学会粒计算与知识发现专委会委员,CIPS社会媒体处理专委会委员,主要研究方向为机器学习、粒计算以及社交网络分析和科技大数据挖掘应用研究。获得发明专利和软件著作权多项,发表学术论文60余篇。
通讯作者:赵姝.E-mail:zhaoshuzs2002@hotmail.com

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com