[1]梁慧,曹峰,钱宇华,等.图像情境下的数字序列逻辑学习[J].智能系统学报,2019,14(6):1189-1198.[doi:10.11992/tis.201905044]
 LIANG Hui,CAO Feng,QIAN Yuhua,et al.Number sequence logic learning in image context[J].CAAI Transactions on Intelligent Systems,2019,14(6):1189-1198.[doi:10.11992/tis.201905044]
点击复制

图像情境下的数字序列逻辑学习

参考文献/References:
[1] BOGOSHI J. The oldest mathematical artefact[J]. The mathematical gazette, 1987, 71(458):294-294.
[2] SCHMID U, KITZELMANN E. Inductive rule learning on the knowledge level[J]. Cognitive systems research, 2011, 12(3/4):237-248.
[3] FLENER P, SCHMID U. An introduction to inductive programming[J]. Artificial intelligence review, 2008, 29(1):45-62.
[4] COLTON S, BUNDY A, WALSH T. Automatic Invention of Integer Sequences[M]//The fertility of the soil/. Cambridge University Press AAAI/IAAI, 2000:558-563.
[5] QIAN Y, LI F J, LIANG J Y, et al. Space structure and clustering of categorical data[J]. IEEE transactions on neural networks and learning systems, 2016, 27(10):2047-2059.
[6] QIAN Y, XU H, LIANG J Y, et al. Fusing monotonic decision trees[J]. IEEE transactions on knowledge and data engineering, 2015, 27(10):2717-2728.
[7] QIAN Y, LI Y, LIANG J, et al. Fuzzy granular structure distance[J]. IEEE transactions on fuzzy systems, 2015, 23(6):2245-2259.
[8] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation:An accelerator for attribute reduction in rough set theory[J]. Artificial intelligence, 2010, 174(9/10):597-618.
[9] RAVEN J, et al. Raven progressive matrices[M]. Handbook of Nonverbal Assessment, 2003, 223-237.
[10] MUGGLETON S, CHEN J. Guest editorial:special issue on inductive logic programming (ILP 2011)[J]. Machine learning, 2012, 89(3):213-214.
[11] HOLZMAN T G, PELLIGRINO J W, GLASER R. Cognitive dimensions of numerical rule induction[J]. Journal of educational psychology, 1982, 74(3):360-373.
[12] STERNBERG R.J. Handbook of Intelligence[M]. Cambridge University Press, 2000.
[13] SIMON H A, KOTOVSKY K. Human acquisition of concepts for sequential patterns[J]. Psychological review, 1963, 70(6):534-546.
[14] SANGHI P, DOWE D.L, A computer program capable of passing I.Q. tests[C]//4th Int. Conf. on Cognitive Science(ICCS’03), Sydney, 2003:570-575.
[15] SIEBERS M, SCHMID U. Semi-analytic natural number series induction[J]. Advances in artificial intelligence, 2012, 7526:249-252.
[16] STRANNEGARD C, AMIRGHASEMI M, ULFSBACKER S. An anthropomorphic method for number sequence problems[J]. Cognitive systems research, 2013, 22-23:27-34.
[17] HOFMANN J, KITZELMANN E, SCHMID U. Applying inductive program synthesis to induction of number series a case study with IGOR2[J]. Joint german/austrian conference on artificial intelligence(Künstliche Intelligenz).Springer, Cham, 2014:25-36.
[18] RAGNI M, KLEIN A. Predicting numbers:An AI approach to solving number series[C]//German Conference on Advances in Artificial Intelligence. Springer, Berlin, Heidelberg, 2011:255-259.
[19] RAGNI M, KLEIN A. Solving number series-architectural properties of successful artificial neural networks[C]//NCTA 2011-Proceedings of the International Conference on Neural Computation Theory and Applications, 2011:224-229.
[20] KINGMA D P, BA J. Adam:A method for stochastic optimization.[C]//Proceedings of the 3rd International Comference on Learning Representations, San Diego, arXiv prerint arXiv:1412.6980, 2014.
[21] LECUN Y, BENGIO Y, Hinton G. Deep learning[M]. Nature, 2015, 521(7553):436.
[22] HOCHREITER S, SCHMIDHUBER, JüRGEN. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[23] CHUMERIN N. Convolutional neural network[J]. Neurocomputing, 2015, 148:136-142.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. In:advances in neural information processing systems, 2012:1097-1105.
[25] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1):1929-1958.
[26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[J]. In proceedings of the IEEE conference on computer vision and pattern recognition, 2016:770-778.
[27] SMITH R. An overview of the tesseract OCR engine[C]//icdar. IEEE Computer Society, 2007, 2:629-633.
相似文献/References:
[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(1):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4():1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(6):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3():476.
[3]徐玉如,庞永杰,甘?? 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1():9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(1):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1():38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(2):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1():16.
[6]秦裕林,朱新民,朱? 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(2):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1():11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(1):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(3):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(5):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2():20.
[10]王志良,杨?? 溢,杨?? 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(6):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4():521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

收稿日期:2019-04-15。
基金项目:国家自然科学基金项目(61672332,61432011,U1435212,61872226);山西省海外归国人员研究项目(2017023);山西省自然科学基金计划资助项目(201701D121052)
作者简介:梁慧,女,1994年生,硕士研究生,主要研究方向为机器学习、深度学习和逻辑学习;曹峰,男,1980年生,副教授,博士,主要研究方向为人工智能、空间数据挖掘。主持国家自然科学青年基金项目1项,山西省青年科技研究基金项目1项,参与山西省青年科技研究基金项目2项,获中国科学院大学优秀毕业生称号,博士论文被评为中国科学院地理科学与资源研究所优秀博士论文。发表学术论文10余篇;钱宇华,男,1976年生,教授,博士生导师,主要研究方向为人工智能、大数据、复杂网络、数据挖掘与机器学习。2014-2016年,连续入选爱思唯尔中国高被引学者榜单。曾获得山西省科学技术奖(自然科学类)一等奖,教育部宝钢教育基金特等奖,CCF优秀博士论文奖,山西省"五四青年奖章",全国百篇优秀博士论文提名奖,获发明专利2项。发表学术论文80余篇
通讯作者:钱宇华.E-mail:jinchengqyh@126.com

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com