[1]何强,张娇阳.核对齐多核模糊支持向量机[J].智能系统学报,2019,14(6):1163-1169.[doi:10.11992/tis.201904050]
 HE Qiang,ZHANG Jiaoyang.Kernel-target alignment multi-kernel fuzzy support vector machine[J].CAAI Transactions on Intelligent Systems,2019,14(6):1163-1169.[doi:10.11992/tis.201904050]
点击复制

核对齐多核模糊支持向量机

参考文献/References:
[1] VAPNIK V N. The nature of statistical learning theory[M]. 2nd ed. New York:Springer-Verlag, 1999:69-110.
[2] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009:115-132.
[3] LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2):464-471.
[4] SIAHROUDI S K, MOODI P Z, BEIGY H. Detection of evolving concepts in non-stationary data streams:a multiple kernel learning approach[J]. Expert systems with applications, 2018, 91:187-197.
[5] GONEN M, ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of machine learning research, 2011, 12:2211-2268.
[6] CRISTIANINI N, SHAWE-TAYLOR J, ELISSEEFF A, et al. On kernel-target alignment[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:367-373.
[7] HE Qiang, WU Congxin. Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets[J]. Soft computing, 2011, 15(6):1105-1114.
[8] LIN Chunfu, WANG Shengde. Training algorithms for fuzzy support vector machines with noisy data[J]. Pattern recognition letters, 2004, 25(14):1647-1656.
[9] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge:Cambridge University Press, 2000:1-28.
[10] DE DIEGO I M, MU?OZ A, MOGUERZA J M. Methods for the combination of kernel matrices within a support vector framework[J]. Machine learning, 2010, 78(1/2):137-174.
[11] CHRISTOUDIAS C M, URTASUN R, DARRELL T. Bayesian localized multiple kernel learning. Technical Report No. UCB/EECS-2009-96[R]. Berkeley:University of California, 2009:1531-1565.
[12] BEN-HUR A, NOBLE W S. Kernel methods for predicting protein-protein interactions[J]. Bioinformatics, 2005, 21(S1).
[13] QIU Shibin, LANE T. A Framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2009, 6(2):190-199.
[14] VARMA M, RAY D. Learning the discriminative power-invariance trade-off[C]//Proceedings of 2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007:1-8.
[15] 杜海洋. 简化多核支持向量机的研究[D]. 北京:北京交通大学, 2015:13-25. DU Haiyang. Research of reduced multiple kernel support vector machine[D]. Beijing:Beijing Jiaotong University, 2015:13-25.
[16] WANG Tinghua, ZHAO Dongyan, TIAN Shengfeng. An overview of kernel alignment and its applications[J]. Artificial intelligence review, 2015, 43(2):179-192.
[17] ZHONG Shangping, CHEN Daya, XU Qianfen, et al. Optimizing the Gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification[J]. Pattern recognition, 2013, 46(7):2045-2054.
[18] 刘向东, 骆斌, 陈兆乾. 支持向量机最优模型选择的研究[J]. 计算机研究与发展, 2005, 42(4):576-581 LIU Xiangdong, LUO Bin, CHEN Zhaoqian. Optimal model selection for support vector machines[J]. Journal of computer research and development, 2005, 42(4):576-581
[19] 周炜, 周创明, 史朝辉, 等. 粗糙集理论及应用[M]. 北京:清华大学出版社, 2015:57-64.
[20] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17(2/3):191-209.
[21] DUBOIS D, PRADE H. Putting rough sets and fuzzy sets together[M]//S?OWI?SKI R. Intelligent Decision Support:Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht, Netherlands:Springer, 1992:203-232.
[22] CHEN Degang, YANG Yongping, WANG Hui. Granular computing based on fuzzy similarity relations[J]. Soft computing, 2011, 15(6):1161-1172.
[23] CHEN Linlin, CHEN Degang, WANG Hui. Alignment based kernel selection for multi-label learning[J]. Neural processing letters, 2019, 49(3):1157-1177.
相似文献/References:
[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(6):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(2):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4():157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[4]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2():83.
[5]赵春晖,陈万海,万? 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for? a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():77.
[6]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(4):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3():361.
[7]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(2):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5():144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(4):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5():327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6():261.

备注/Memo

收稿日期:2019-04-20。
基金项目:国家自然科学基金项目(61473111);北京建筑大学科学研究基金项目(KYJJ2017017).
作者简介:何强,男,1977年生,副教授,主要研究方向为多核学习、监督学习、确定性信息处理。主持国家自然基金、河北省自然基金等多项。发表学术论文30余篇;张娇阳,女,1993年生,硕士,主要研究方向为多核学习、支持向量机。参与国家基金项目1项,发表学术论文3篇。
通讯作者:何强.E-mail:heqiang@bucea.edu.cn

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com