[1]曾碧卿,韩旭丽,王盛玉,等.层次化双注意力神经网络模型的情感分析研究[J].智能系统学报,2020,15(3):460-467.[doi:10.11992/tis.201812017]
ZENG Biqing,HAN Xuli,WANG Shengyu,et al.Hierarchical double-attention neural networks for sentiment classification[J].CAAI Transactions on Intelligent Systems,2020,15(3):460-467.[doi:10.11992/tis.201812017]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第3期
页码:
460-467
栏目:
学术论文—自然语言处理与理解
出版日期:
2020-05-05
- Title:
-
Hierarchical double-attention neural networks for sentiment classification
- 作者:
-
曾碧卿1, 韩旭丽2, 王盛玉2, 周武2, 杨恒2
-
1. 华南师范大学 软件学院,广东 佛山 528225;
2. 华南师范大学 计算机学院,广东 广州 510631
- Author(s):
-
ZENG Biqing1, HAN Xuli2, WANG Shengyu2, ZHOU Wu2, YANG Heng2
-
1. College of Software, South China Normal University, Foshan 528225, China;
2. College of Computer, South China Normal University, Guangzhou 510631, China
-
- 关键词:
-
情感分析; 注意力机制; 卷积神经网络; 情感分类; 循环神经网络; 词向量; 深度学习; 特征选取
- Keywords:
-
sentiment analysis; attention mechanism; convolutional neural network (CNN); sentiment classification; recurrent neural network (RNN); word vector; deep learning; feature selection
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201812017
- 摘要:
-
在篇章级的情感分类中由于篇章级文本较长,特征提取较普通句子级分析相对较难,大多方法使用层次化的模型进行篇章文本的情感分析,但目前的层次化模型多以循环神经网络和注意力机制为主,单一的循环神经网络结构提取的特征不够明显。本文针对篇章级的情感分类任务,提出一种层次化双注意力神经网络模型。首先对卷积神经网络进行改进,构建词注意力卷积神经网络。然后模型从两个层次依次提取篇章特征,第一层次使注意力卷积神经网络发现每个句子中的重要词汇,提取句子的词特征,构建句子特征向量;第二层次以循环神经网络获取整个篇章的语义表示,全局注意力机制发现篇章中每个句子的重要性,分配以不同的权重,最后构建篇章的整体语义表示。在IMDB、YELP 2013、YELP 2014数据集上的实验表明,模型较当前最好的模型更具优越性。
- Abstract:
-
In sentiment classification, feature extraction in the document level is more difficult than the analysis in the common sentence level because of the length of the text. Most methods apply a hierarchical model to the sentiment analysis of text in the document level. However, most existing hierarchical methods mainly focus on a recurrent neural network (RNN) and attention mechanism, and the feature extracted by a single RNN is unclear. To solve the sentiment classification problem in the document level, we propose a hierarchical double-attention neural network model. In the first step, we improve a convolutional neural network (CNN), construct a word attention CNN, and then extract the features of the chapter from two levels. In the first level, the attention CNN can identify important words and phrases from every sentence, extract the word feature of the sentence, and construct the feature vector of the sentence. In the second level, the semantic meaning of the document is derived by the RNN. The global attention mechanism can find the importance of every sentence in the document, attribute different weights to them, and construct the whole semantic representation of the document. The experiment results on IMDB, YELP 2013, and YELP 2014 datasets show that our model achieves a more significant improvement than all state-of-the-art methods.
更新日期/Last Update:
1900-01-01