[1]曾碧卿,韩旭丽,王盛玉,等.层次化双注意力神经网络模型的情感分析研究[J].智能系统学报,2020,15(3):460-467.[doi:10.11992/tis.201812017]
 ZENG Biqing,HAN Xuli,WANG Shengyu,et al.Hierarchical double-attention neural networks for sentiment classification[J].CAAI Transactions on Intelligent Systems,2020,15(3):460-467.[doi:10.11992/tis.201812017]
点击复制

层次化双注意力神经网络模型的情感分析研究

参考文献/References:
[1] PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up?: sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing-Volume 10. Stroudsburg, USA, 2002: 79-86.
[2] LU Yue, CASTELLANOS M, DAYAL U, et al. Automatic construction of a context-aware sentiment lexicon: an optimization approach[C]//Proceedings of the 20th International Conference on World Wide Web. Hyderabad, India, 2011: 347-356.
[3] WANG Sida, MANNING C D. Baselines and bigrams: simple, good sentiment and topic classification[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers. Jeju Island, Korea, 2012: 90-94.
[4] KIRITCHENKO S, ZHU Xiaodan, MOHAMMAD S M. Sentiment analysis of short informal texts[J]. Journal of artificial intelligence research, 2014, 50: 723-762.
[5] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA, 2016: 260-270.
[6] SHEN Dinghan, MIN M R, LI Yitong, et al. Adaptive convolutional filter generation for natural language understanding. [J]. arXiv: 1709.08294, 2017.
[7] WANG Shuohang, JIANG Jing. Machine comprehension using match-LSTM and answer pointer[C]//Proceedings of International Conference on Learning Representations. Toulon, France, 2017: 1-15.
[8] WANG Wenhui, YANG Nan, WEI Furu, et al. Gated self-matching networks for reading comprehension and question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada, 2017: 189-198.
[9] KUMAR A, IRSOY O, ONDRUSKA P, et al. Ask me anything: dynamic memory networks for natural language processing[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA, 2016: 1378-1387.
[10] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar, 2014: 1746-1751.
[11] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P, et al. A convolutional neural network for modelling sentences[C]//Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA, 2014: 655-665.
[12] ZHANG Xiang, ZHAO Junbo, LECUN Y. Character-level convolutional networks for text classification[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 649-657.
[13] TANG Duyu, QIN Bing, LIU Ting. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal, 2015: 1422-1432.
[14] YANG Zichao, YANG Diyi, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA, 2016: 1480-1489.
[15] ADI Y, KERMANY E, BELINKOV Y, et al. Fine-grained analysis of sentence embeddings using auxiliary prediction tasks[C]//Proceedings of International Conference on Learning Representations. Toulon, France, 2017: 1608-1622.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 5998-6008.
[17] WAN Xiaojun. Co-training for cross-lingual sentiment classification[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Suntec, Singapore, 2009: 235-243.
[18] ZAGIBALOV T, CARROLL J. Automatic seed word selection for unsupervised sentiment classification of Chinese text[C]//Proceedings of the 22nd International Conference on Computational Linguistics. Manchester, United Kingdom, 2008: 1073-1080.
[19] LIU Jiangming, ZHANG Yue. Attention modeling for targeted sentiment[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Valencia, Spain, 2017: 572-577.
[20] ZHANG Lei, WANG Shuai, LIU Bing. Deep learning for sentiment analysis: a survey[J]. WIREs data mining and knowledge discovery, 2018, 8(4): e1253.
[21] CHEN Peng, SUN Zhongqian, BING Lidong, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark, 2017: 452-461.
[22] TANG Duyu, WEI Furu, YANG Nan, et al. Learning sentiment-specific word embedding for twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA, 2014: 1555-1565.
[23] JOHNSON R, ZHANG Tong. Effective use of word order for text categorization with convolutional neural networks[C]//Proceedings of 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Denver, USA, 2015: 103-112.
[24] SOCHER R, PERELYGIN A, WU J, et al. Recursive deep models for semantic compositionality over a sentiment Treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, USA, 2013: 1631-1642.
[25] XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015: 2048-2057.
[26] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations, 2014. San Diego, USA, 2015: 473-488.
[27] LUONG T, PHAM H, MANNING C D, et al. Effective approaches to attention-based neural machine translation[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal, 2015: 1412-1421.
[28] ZHOU Xinjie, WAN Xiaojun, XIAO Jianguo. Attention-based LSTM network for cross-lingual sentiment classification[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA, 2016: 247-256.
[29] ALLAMANIS M, PENG Hao, SUTTON C A. A convolutional attention network for extreme summarization of source code[C]//Proceedings of 2016 International Conference on Machine Learning. New York, USA, 2016: 2091-2100.
[30] YIN Wenpeng, SCHüTZE H, XIANG Bing, et al. ABCNN: attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the association for computational linguistics, 2016, 4: 259-272.
[31] WANG Linlin, CAO Zhu, DE MELO G, et al. Relation classification via multi-level attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany, 2016: 1298-1307.
[32] CHEN Huimin, SUN Maosong, TU Cunchao, et al. Neural sentiment classification with user and product attention [C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA, 2016: 1650-1659.
[33] FAN Rongen, CHANG Kaiwei, HSIEH C J, et al. LIBLINEAR: a library for large linear classification[J]. Journal of machine learning research, 2008, 9: 1871-1874.
[34] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing, China, 2014: 1188-1196.
相似文献/References:
[1]赵文清,侯小可,沙海虹.语义规则在微博热点话题情感分析中的应用[J].智能系统学报,2014,9(1):121.[doi:10.3969/j.issn.1673-4785.201208020]
 ZHAO Wenqing,HOU Xiaoke,SHA Haihong.Application of semantic rules to sentiment analysis of microblog hot topics[J].CAAI Transactions on Intelligent Systems,2014,9():121.[doi:10.3969/j.issn.1673-4785.201208020]
[2]吴钟强,张耀文,商琳.基于语义特征的多视图情感分类方法[J].智能系统学报,2017,12(5):745.[doi:10.11992/tis.201706026]
 WU Zhongqiang,ZHANG Yaowen,SHANG Lin.Multi-view sentiment classification of microblogs based on semantic features[J].CAAI Transactions on Intelligent Systems,2017,12():745.[doi:10.11992/tis.201706026]
[3]申凯,王晓峰,杨亚东.基于双向消息链路卷积网络的显著性物体检测[J].智能系统学报,2019,14(6):1152.[doi:10.11992/tis.201812003]
 SHEN Kai,WANG Xiaofeng,YANG Yadong.Salient object detection based on bidirectional message link convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14():1152.[doi:10.11992/tis.201812003]
[4]赵文清,程幸福,赵振兵,等.注意力机制和Faster RCNN相结合的绝缘子识别[J].智能系统学报,2020,15(1):92.[doi:10.11992/tis.201907023]
 ZHAO Wenqing,CHENG Xingfu,ZHAO Zhenbing,et al.Insulator recognition based on attention mechanism and Faster RCNN[J].CAAI Transactions on Intelligent Systems,2020,15():92.[doi:10.11992/tis.201907023]
[5]申翔翔,侯新文,尹传环.深度强化学习中状态注意力机制的研究[J].智能系统学报,2020,15(2):317.[doi:10.11992/tis.201809033]
 SHEN Xiangxiang,HOU Xinwen,YIN Chuanhuan.State attention in deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():317.[doi:10.11992/tis.201809033]
[6]莫宏伟,田朋.基于注意力融合的图像描述生成方法[J].智能系统学报,2020,15(4):740.[doi:10.11992/tis.201910039]
 MO Hongwei,TIAN Peng.An image caption generation method based on attention fusion[J].CAAI Transactions on Intelligent Systems,2020,15():740.[doi:10.11992/tis.201910039]
[7]肖宇晗,林慧苹,汪权彬,等.基于双特征嵌套注意力的方面词情感分析算法[J].智能系统学报,2021,16(1):142.[doi:10.11992/tis.202012024]
 XIAO Yuhan,LIN Huiping,WANG Quanbin,et al.An algorithm for aspect-based sentiment analysis based on dual features attention-over-attention[J].CAAI Transactions on Intelligent Systems,2021,16():142.[doi:10.11992/tis.202012024]
[8]鲍维克,袁春.面向推荐系统的分期序列自注意力网络[J].智能系统学报,2021,16(2):353.[doi:10.11992/tis.202005028]
 BAO Weike,YUAN Chun.Recommendation system with long-term and short-term sequential self-attention network[J].CAAI Transactions on Intelligent Systems,2021,16():353.[doi:10.11992/tis.202005028]
[9]洪恺临,曹江涛,姬晓飞.改进Center-Net网络的自主喷涂机器人室内窗户检测[J].智能系统学报,2021,16(3):425.[doi:10.11992/tis.202005016]
 HONG Kailin,CAO Jiangtao,JI Xiaofei.Indoor window detection of autonomous spraying robot based on improved CenterNet network[J].CAAI Transactions on Intelligent Systems,2021,16():425.[doi:10.11992/tis.202005016]
[10]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[11]张铭泉,周辉,曹锦纲.基于注意力机制的双BERT有向情感文本分类研究[J].智能系统学报,2022,17(6):1220.[doi:10.11992/tis.202112038]
 ZHANG Mingquan,ZHOU Hui,CAO Jingang.Dual BERT directed sentiment text classification based on attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17():1220.[doi:10.11992/tis.202112038]
[12]胡文彬,陈龙,黄贤波,等.融合交叉注意力的突发事件多模态中文反讽识别模型[J].智能系统学报,2024,19(2):392.[doi:10.11992/tis.202212011]
 HU Wenbin,CHEN Long,HUANG Xianbo,et al.A multimodal Chinese sarcasm detection model for emergencies based on cross attention[J].CAAI Transactions on Intelligent Systems,2024,19():392.[doi:10.11992/tis.202212011]

备注/Memo

收稿日期:2018-12-15。
基金项目:国家自然科学基金项目(61772211,61503143)
作者简介:曾碧卿,教授,博士,主要研究方向为认知计算和自然语言处理。获发明专利6项,发表学术论文100余篇,出版学术专著2部;韩旭丽,硕士研究生,主要研究方向为自然语言处理、情感分析。发表学术论文10篇;王盛玉,硕士研究生,主要研究方向为自然语言处理、情感分析。发表学术论文6篇
通讯作者:曾碧卿.E-mail:zengbiqing0528@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com