[1]普事业,刘三阳,白艺光.网络拓扑特征的不平衡数据分类[J].智能系统学报,2019,14(5):889-896.[doi:10.11992/tis.201812014]
 PU Shiye,LIU Sanyang,BAI Yiguang.Imbalanced data classification of network topology characteristics[J].CAAI Transactions on Intelligent Systems,2019,14(5):889-896.[doi:10.11992/tis.201812014]
点击复制

网络拓扑特征的不平衡数据分类

参考文献/References:
[1] HE Haibo, GARCIA E A. Learning from imbalanced data[J]. IEEE transactions on knowledge and data engineering, 2009, 21(9):1263-1284.
[2] KHOSHGOFTAAR T M, GOLAWALA M, VAN HULSE J. An empirical study of learning from imbalanced data using random forest[C]//Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence. Patras, Greece, 2007:310-317.
[3] LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2):464-471.
[4] 程险峰, 李军, 李雄飞. 一种基于欠采样的不平衡数据分类算法[J]. 计算机工程, 2011, 37(13):147-149 CHENG Xianfeng, LI Jun, LI Xiongfei. Imbalanced data classification algorithm based on undersampling[J]. Computer engineering, 2011, 37(13):147-149
[5] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2011, 16(1):321-357.
[6] VEROPOULOS K, CAMPBELL I C G, CRISTIANINI N. Controlling the sensitivity of support vector machines[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999:55-60.
[7] 张银峰, 郭华平, 职为梅, 等. 一种面向不平衡数据分类的组合剪枝方法[J]. 计算机工程, 2014, 40(6):157-161, 165 ZHANG Yinfeng, GUO Huaping, ZHI Weimei, et al. An ensemble pruning method for imbalanced data classification[J]. Computer engineering, 2014, 40(6):157-161, 165
[8] SILVA T C, ZHAO Liang. Network-based high level data classification[J]. IEEE transactions on neural networks and learning systems, 2012, 23(6):954-970.
[9] SILVA T C, ZHAO Liang. High-level pattern-based classification via tourist walks in networks[J]. Information sciences, 2015, 294:109-126.
[10] CARNEIRO M G, ZHAO Liang. Organizational data classification based on the importance concept of complex networks[J]. IEEE transactions on neural networks and learning systems, 2018, 29(8):3361-3373.
[11] BERTINI JR J R, ZHAO Liang, MOTTA R, et al. A nonparametric classification method based on K-associated graphs[J]. Information sciences, 2011, 181(24):5435-5456.
[12] Lü Linyuan, ZHOU Tao. Link prediction in complex networks:A survey[J]. Physical A:statistical mechanics and its applications, 2011, 390(6):1150-1170.
[13] ZHANG Qianming, SHANG Mingsheng, Lü Linyuan. Similarity-based classification in partially Labeled networks[J]. International journal of modern physical C, 2010, 21(6):813-824.
[14] BIRX D L, PIPENBERG S J. A complex mapping network for phase sensitive classification[J]. IEEE transactions on neural networks, 1993, 4(1):127-135.
[15] WANG Meng, FU Weijie, HAO Shijie, et al. Learning on big graph:label inference and regularization with anchor hierarchy[J]. IEEE transactions on knowledge and data engineering, 2017, 29(5):1101-1114.
[16] CONG Chen, LIU Tongliang, TAO Dacheng, et al. Deformed graph laplacian for semisupervised learning[J]. IEEE transactions on neural networks and learning systems, 2015, 26(10):2261-2274.
[17] 顾苏杭, 王士同. 基于数据点本身及其位置关系辅助信息挖掘的分类方法[J]. 模式识别与人工智能, 2018, 31(3):197-207 GU Suhang, WANG Shitong. Classification approach by mining betweenness information beyond data points themselves[J]. Pattern recognition and artificial intelligence, 2018, 31(3):197-207
[18] TSANG I W H, KWOK J T Y, ZURADA J M. Generalized core vector machines[J]. IEEE transactions on neural networks, 2006, 17(5):1126-1140.
[19] 赵自翔, 王广亮, 李晓东. 基于支持向量机的不平衡数据分类的改进欠采样方法[J]. 中山大学学报(自然科学版), 2012, 51(6):10-16 ZHAO Zixiang, WANG Guangliang, LI Xiaodong. An improved SVM based under-sampling method for classifying imbalanced data[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6):10-16
相似文献/References:
[1]徐立中,林志贵,黄凤辰.基于模糊证据理论的水质环境状态估计[J].智能系统学报,2007,2(3):79.
 XU Li-zhong,LIN Zhi-gui,Huang Feng-chen.Water environmental qual ity assessment based on fuzzy evidence theory[J].CAAI Transactions on Intelligent Systems,2007,2():79.
[2]王超,乔俊飞.参数自适应粒子群算法的给水管网优化研究[J].智能系统学报,2015,10(5):722.[doi:10.11992/tis.201410036]
 WANG Chao,QIAO Junfei.An parameter adaptive particle swarm optimization foroptimal design of water supply systems[J].CAAI Transactions on Intelligent Systems,2015,10():722.[doi:10.11992/tis.201410036]
[3]胡小生,温菊屏,钟勇.动态平衡采样的不平衡数据集成分类方法[J].智能系统学报,2016,11(2):257.[doi:10.11992/tis.201507015]
 HU Xiaosheng,WEN Juping,ZHONG Yong.Imbalanced data ensemble classification using dynamic balance sampling[J].CAAI Transactions on Intelligent Systems,2016,11():257.[doi:10.11992/tis.201507015]
[4]常亮,张伟涛,古天龙,等.知识图谱的推荐系统综述[J].智能系统学报,2019,14(2):207.[doi:10.11992/tis.201805001]
 CHANG Liang,ZHANG Weitao,GU Tianlong,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14():207.[doi:10.11992/tis.201805001]
[5]程康明,熊伟丽.一种双优选的半监督回归算法[J].智能系统学报,2019,14(4):689.[doi:10.11992/tis.201805010]
 CHENG Kangming,XIONG Weili.A dual-optimal semi-supervised regression algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():689.[doi:10.11992/tis.201805010]
[6]顾军华,谢志坚,武君艳,等.基于图游走的并行协同过滤推荐算法[J].智能系统学报,2019,14(4):743.[doi:10.11992/tis.201806002]
 GU Junhua,XIE Zhijian,WU Junyan,et al.Parallel collaborative filtering recommendation algorithm based on graph walk[J].CAAI Transactions on Intelligent Systems,2019,14():743.[doi:10.11992/tis.201806002]
[7]周晶雨,王士同.对不平衡目标域的多源在线迁移学习[J].智能系统学报,2022,17(2):248.[doi:10.11992/tis.202012019]
 ZHOU Jingyu,WANG Shitong.Multi-source online transfer learning for imbalanced target domains[J].CAAI Transactions on Intelligent Systems,2022,17():248.[doi:10.11992/tis.202012019]
[8]季友昌,袁伟伟,毛善斌,等.不平衡小样本基于局部域对抗适应网络的发动机振动预测模型[J].智能系统学报,2023,18(5):1005.[doi:10.11992/tis.202210030]
 JI Youchang,YUAN Weiwei,MAO Shanbin,et al.Partial domain adversarial adaptation networks for imbalanced small samples in aeroengine vibration prediction[J].CAAI Transactions on Intelligent Systems,2023,18():1005.[doi:10.11992/tis.202210030]
[9]邸剑,刘骏华,曹锦纲.利用BERT和覆盖率机制改进的HiNT文本检索模型[J].智能系统学报,2024,19(3):719.[doi:10.11992/tis.202201020]
 DI Jian,LIU Junhua,CAO Jingang.An improved HiNT text retrieval model using BERT and coverage mechanism[J].CAAI Transactions on Intelligent Systems,2024,19():719.[doi:10.11992/tis.202201020]

备注/Memo

收稿日期:2018-12-12。
基金项目:国家自然科学基金项目(61877046);陕西省自然科学基金项目(2017JM1001).
作者简介:普事业,男,1993年生,硕士研究生,主要研究方向为数据挖掘、复杂网络;刘三阳,男,1959年生,教授,博士生导师,主要研究方向为最优化方法及其应用研究、系统建模、信息网络。先后主持国家自然科学基金项目5项、教育部项目10多项,获国家级教学成果奖3项。发表学术论文500余篇,包括全球热点论文和ESI高引论文及2015年中国百篇最具影响力学术论文,出版教材10余部,其中2部获国家级奖项;白艺光,男,1993年生,博士研究生,主要研究方向为复杂网络功能及鲁棒性、大规模并行优化在网络中的应用。发表学术论文7篇。
通讯作者:普事业.E-mail:psy2361@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com