[1]商显震,韩萌,王少峰,等.融合迁移学习和神经网络的皮肤病诊断方法[J].智能系统学报,2020,15(3):452-459.[doi:10.11992/tis.201811015]
 SHANG Xianzhen,HAN Meng,WANG Shaofeng,et al.A skin diseases diagnosis method combining transfer learning and neural networks[J].CAAI Transactions on Intelligent Systems,2020,15(3):452-459.[doi:10.11992/tis.201811015]
点击复制

融合迁移学习和神经网络的皮肤病诊断方法

参考文献/References:
[1] 尤艳明, 李邻峰. 北京市海淀区社区人群常见皮肤病流行病学调查及风险因素分析[J]. 中国皮肤性病学杂志, 2011, 25(6): 459-461
YOU Y M, LI L F. The prevalence of skin diseases in a community of beijing and analysis of risk factors[J]. The Chinese journal of dermatovenereology, 2011, 25(6): 459-461
[2] JIANG Weiqin, SHEN Yifei, DING Yongfeng, et al. A naive Bayes algorithm for tissue origin diagnosis (TOD-Bayes) of synchronous multifocal tumors in the hepatobiliary and pancreatic system[J]. International journal of cancer, 2018, 142(2): 357-368.
[3] SAYIN R, KESKIN S, HAMAMCI M. Evaluation of several classification methods in carpal tunnel syndrome[J]. The journal of the Pakistan medical association, 2017, 67(11): 1654-1657.
[4] EL BAKRAWY L M. Grey wolf optimization and naive Bayes classifier incorporation for heart disease diagnosis[J]. Australian journal of basic and applied sciences, 2017, 11(7): 64-70.
[5] LIU Jingzhou, CHANG Weicheng, WU Yuexin, et al. Deep learning for extreme multi-label text classification [C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Shinjuku, Japan, 2017: 115-124.
[6] 王诗琪, 刘洁, 朱晨雨. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较[J]. 中华皮肤科杂志, 2018, 51(7): 486-489
WAMG S Q, LIU J, ZHU C Y. Comparison of diagnostic performance of dermatologists versus deep convolutional neural network for dermoscopic images of pigmented nevus and seborrheic keratosis[J]. Chinese journal of dermatology, 2018, 51(7): 486-489
[7] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[8] 林伟铭, 高钦泉, 杜民. 卷积神经网络诊断阿尔兹海默症的方法[J]. 计算机应用, 2017, 37(12): 3504-3508
LIN Weiming, GAO Qinquan, DU Min. Convolutional neural network based method for diagnosis of Alzheimer’s disease[J]. Journal of computer applications, 2017, 37(12): 3504-3508
[9] DOU Qi, CHEN Hao, JIN Yueming, et al. Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention. Quebec City, Canada, 2017: 630-638.
[10] WIMMER G, VéCSEI A, UHL A. CNN transfer learning for the automated diagnosis of celiac disease[C]//Proceedings of the 2016 Sixth International Conference on Image Processing Theory, Tools and Applications. Oulu, Finland, 2016: 1-6.
[11] CHENG Danni, LIU Manhua, FU Jianliang, et al. Classification of MR brain images by combination of multi-CNNs for AD diagnosis[C]//Proceedings of the SPIE 10420, Ninth International Conference on Digital Image Processing. Hong Kong, China, 2017: 1042042.
[12] CHE Zhengping, KALE D, LI Wenzhe, et al. Deep computational Phenotyping[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Australia, 2015: 507-516.
[13] DABEK F D, CABAN J J. A neural network based model for predicting psychological conditions[C]//Proceedings of 8th International Conference on Brain Informatics and Health. London, UK, 2015: 252-261.
[14] RUGHANI A I, DUMONT T M, LU Zhenyu, et al. Use of an artificial neural network to predict head injury outcome: clinical article[J]. Journal of neurosurgery, 2010, 113(3): 585-590.
[15] LASKO T A, DENNY J C, LEVY M A. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data[J]. PLoS one, 2013, 8(6): e66341.
[16] KIM Y. Convolutional neural networks for sentence classification[C]//In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1746-1751.
[17] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the national academy of sciences of the United States of America, 1982, 79(8): 2554-2558.
[18] LAI Siwei, XU Liheng, LIU Kang, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, USA, 2015: 2267-2273.
[19] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39
ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of software, 2015, 26(1): 26-39
[20] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[21] WEI Fengmei, ZHANG Jianpei, CHU Yan, et al. FSFP: transfer learning from long texts to the short[J]. Applied mathematics & information sciences, 2014, 8(4): 2033-2040.
相似文献/References:
[1]丁永生.计算智能的新框架:生物网络结构[J].智能系统学报,2007,2(2):26.
 DING Yong-sheng.A new scheme for computational intelligence: bio-network architecture[J].CAAI Transactions on Intelligent Systems,2007,2():26.
[2]徐 雄.人工情感的进化控制系统实现[J].智能系统学报,2008,3(2):135.
 XU Xiong.Implementation of an evolutionary control system based on artificial emotion[J].CAAI Transactions on Intelligent Systems,2008,3():135.
[3]周孔丹,李 宁,鲁华祥.单电子电路的鲁棒性研究[J].智能系统学报,2008,3(3):195.
 ZHOU Kong-dan,LI Ning,LU Hua-xiang.Researching the robustness of single electron devices[J].CAAI Transactions on Intelligent Systems,2008,3():195.
[4]张米娜,韩红桂,乔俊飞.前馈神经网络结构动态增长-修剪方法[J].智能系统学报,2011,6(2):101.
 ZHANG Mina,HAN Honggui,QIAO Junfei.Research on dynamic feedforward neural network structure based on growing and pruning methods[J].CAAI Transactions on Intelligent Systems,2011,6():101.
[5]张文辉,高九州,马静,等.漂浮基空间机器人的径向基神经网络鲁棒自适应控制[J].智能系统学报,2011,6(2):114.
 ZHANG Wenhui,GAO Jiuzhou,MA Jing,et al.The RBF neural network robust adaptive control of a freefloating space robot[J].CAAI Transactions on Intelligent Systems,2011,6():114.
[6]薄迎春,乔俊飞,杨刚.一种多模块协同参与的神经网络[J].智能系统学报,2011,6(3):225.
 BO Yingchun,QIAO Junfei,YANG Gang.A multimodule cooperative neural network[J].CAAI Transactions on Intelligent Systems,2011,6():225.
[7]蒲兴成,张军,张毅.基于神经网络的改进行为协调控制及其在智能轮椅路径规划中的应用[J].智能系统学报,2011,6(5):456.
 PU Xingcheng,ZHANG Jun,ZHANG Yi.Modified behavior coordination for intelligent wheelchair path planning based on a neural network[J].CAAI Transactions on Intelligent Systems,2011,6():456.
[8]段海庆,朱齐丹.基于反步自适应神经网络的船舶航迹控制[J].智能系统学报,2012,7(3):259.
 DUAN Haiqing,ZHU Qidan.Trajectory tracking control of ships based onan adaptive backstepping neural network[J].CAAI Transactions on Intelligent Systems,2012,7():259.
[9]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报,2012,7(5):429.
 QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7():429.
[10]郭一,刘金琨.带执行器饱和的柔性关节机器人位置反馈动态面控制[J].智能系统学报,2013,8(1):21.[doi:10.3969/j.issn.1673-4785.201204012]
 GUO Yi,LIU Jinkun.Position feedback dynamic surface control for flexible joint robots with actuator saturation[J].CAAI Transactions on Intelligent Systems,2013,8():21.[doi:10.3969/j.issn.1673-4785.201204012]

备注/Memo

收稿日期:2018-11-21。
基金项目:国家自然科学基金项目(61563001);宁夏自然科学基金项目(NZ17115);计算机应用技术宁夏回族自治区重点学科项目(PY1703)
作者简介:商显震,硕士研究生,主要研究方向为数据挖掘、机器学习;韩萌,副教授,博士,主要研究方向为数据挖掘、机器学习。主持国家自然科学基金、宁夏自然科学基金等多个基金项目。发表学术论文30余篇;王少峰,硕士研究生,主要研究方向为数据挖掘
通讯作者:韩萌.E-mail:2003051@nun.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com