[1]汪培庄,周红军,何华灿,等.因素表示的信息空间与广义概率逻辑[J].智能系统学报,2019,14(5):843-852.[doi:10.11992/tis.201810021]
WANG Peizhuang,ZHOU Hongjun,HE Huacan,et al.Factorial information space and generalized probability logic[J].CAAI Transactions on Intelligent Systems,2019,14(5):843-852.[doi:10.11992/tis.201810021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第5期
页码:
843-852
栏目:
综述
出版日期:
2019-09-05
- Title:
-
Factorial information space and generalized probability logic
- 作者:
-
汪培庄1, 周红军2, 何华灿3, 钟义信4
-
1. 辽宁工程技术大学 智能工程与数学研究院, 辽宁 阜新 123000;
2. 陕西师范大学 数学学院, 陕西 西安 710062;
3. 西北工业大学 计算机学院, 陕西 西安 710072;
4. 北京邮电大学 智能科学技术中心, 北京 100876
- Author(s):
-
WANG Peizhuang1, ZHOU Hongjun2, HE Huacan3, ZHONG Yixin4
-
1. Institute of Intelligence Engineering and Math, Liaoning Technical University, Fuxin 123000, China;
2. College of Mathematics, Shannxi Normal University, Xi’an 710062, China;
3. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China;
4. Center for Intelligent Science and Technology, Beijing University of Posts Telecommunications, Beijing 100876, China
-
- 关键词:
-
机制主义人工智能; 泛逻辑; 计量概率逻辑; 因素空间; 模糊集; 可能性空间; 谓词演算; 随机集落影
- Keywords:
-
mechanism based artificial intelligence; universal logic; econometric probability logic; factors space; fuzzy sets; possibility space; predicate calculus; random falling shadow
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201810021
- 摘要:
-
国内外近年来所提出的广义概率逻辑对于人工智能的发展有重要意义。能否反映变换演化的实际场景,使逻辑判断能够灵活变通,这是广义概率逻辑发展的关键。为了解决这一问题,本文的目是以信息空间作为逻辑与实际场景的接口。有了这个接口,逻辑判断就能反映变幻莫测的实际场景。本文的方法是用因素空间来定义表现论域以形成新的信息空间,将谓词中的变元取为因素,在已有的逻辑系统中加上本文所提出的背景公理,所有的推理都是在一定背景之下的推理,不同的背景会推出不同的结论。结果是新的逻辑既能维系Stone表示定理的表现要求,又能变得更加灵活有效。结论能使广义概率逻辑更有效地服务于人工智能。为了配合机制主义人工智能的需要,本文还特别提出了语法-语用对接的方法和目标驱动的逆向推理设想,最后为泛逻辑的3种连续算子对进行了数学证明。
- Abstract:
-
The generalized probabilistic logic proposed in recent years is of great significance to the development of artificial intelligence. Make flexible judgment that reflects the scene of actual transformation and evolution is the key to the development of the generalized probability logic. Considering this, this paper takes the information space as the interface between logic and actual scene. With this interface, logical judgment can reflect unpredictable real situations. The method in this paper is to use factors space to define the representation domain to form the information space. Then predicate variables are taken as factors, and background axioms are added into the existing logic system. Reasoning is taken under a certain background, different backgrounds will derive different conclusions. The result is that the new logic can not only maintain the rational requirement of the Stone representation theorem but can also make decisions more flexibly and effectively. The conclusion is that the generalized probabilistic logic can serve artificial intelligence more effectively. To meet the need of mechanistic artificial intelligence, this paper proposes the grammar-pragmatic docking method and the goal-driven backward reasoning. Finally, a mathematical proof is given for three couples of continuous operators in universal logic.
备注/Memo
收稿日期:2018-10-17。
基金项目:国家自然科学基金(61350003,60273087,60873001).
作者简介:汪培庄,男,1936年生,教授,博士生导师,主要研究方向为模糊数学及其在人工智能中的应用。提出和创立了模糊集的随机落影表示、真值流推理和因素空间等数学理论。获得国家级和部委级奖励多项、国际奖1项。发表学术论文200余篇,出版学术著作4部;周红军,男,1980年生,教授,博士生导师,博士,主要研究方向为序代数与逻辑、不确定性数学。先后主持国家、省、部级科学基金5项。发表学术论文40余篇,出版专著2部;何华灿,男,1938年生,教授,博士生导师,主要研究方向为计算机科学和人工智能基础理论,创立泛逻辑理论和柔性神经元原理,近期主要研究广义概率论和数理辩证逻辑及其在智能信息处理中的应用。主持完成国家和省部级自然科学基金8项,获得省部级科技进步奖9项。发表学术论文160余篇,出版专著9部。
通讯作者:汪培庄.E-mail:peizhuangw@126.com
更新日期/Last Update:
1900-01-01