[1]徐耀松,王传为.果蝇算法和改进D-S证据理论的四轴飞行器障碍辨识[J].智能系统学报,2020,15(3):499-506.[doi:10.11992/tis.201809011]
XU Yaosong,WANG Chuanwei.FOA and improved D-S evidence theory for quadcopter obstacle identification[J].CAAI Transactions on Intelligent Systems,2020,15(3):499-506.[doi:10.11992/tis.201809011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第3期
页码:
499-506
栏目:
学术论文—智能系统
出版日期:
2020-05-05
- Title:
-
FOA and improved D-S evidence theory for quadcopter obstacle identification
- 作者:
-
徐耀松, 王传为
-
辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105
- Author(s):
-
XU Yaosong, WANG Chuanwei
-
College of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
四轴飞行器; 避障; 超声波传感器; 红外测距传感器; 激光雷达传感器; 多传感器信息融合; 果蝇算法; D-S证据理论
- Keywords:
-
quadcopter; obstacle avoidance; ultrasonic sensor; infrared distance sensor; lidar sensor; multisensor information fusion; FOA; D-S evidence theory
- 分类号:
-
TP14
- DOI:
-
10.11992/tis.201809011
- 摘要:
-
针对四轴飞行器对障碍辨识效果差,精度低的问题,研究了四轴飞行器障碍辨识的方法. 采用超声波传感器、红外测距传感器以及激光雷达传感器的多传感器信息融合的方法, 通过果蝇算法对传感器原始数据证据权进行优化,得到最优权值,按照各个传感器的最优权值,采用改进的D-S证据理论算法对多传感器的数据进行融合, 提高四轴飞行器的障碍辨识精度. 通过分别对单一传感器以及和其他数据融合算法实验对比,研究结果表明: 在相同条件下,本文提出的方法对障碍物的识别准确率更高,对障碍物的响应更加迅速.
- Abstract:
-
Aiming at the problem that the quadrilateral aircraft has poor recognition effect and low precision, we studied the method of quadcopter obstacle recognition using a multisensor based on an ultrasonic sensor, infrared ranging sensor, and lidar sensor. The original data evidence weight of the sensor was optimized using the fruit-fly optimization algorithm (FOA) to obtain the optimal weight. According to the optimal weight of each sensor, an improved D-S evidence theory algorithm was used to fuse the data of multiple sensors to improve the obstacle recognition accuracy of the quadcopter. By comparing the single sensor and other data fusion algorithms, the research results show that under the same condition, the proposed method has a higher recognition accuracy for obstacles and faster response to obstacles.
更新日期/Last Update:
1900-01-01