[1]徐耀松,王传为.果蝇算法和改进D-S证据理论的四轴飞行器障碍辨识[J].智能系统学报,2020,15(3):499-506.[doi:10.11992/tis.201809011]
 XU Yaosong,WANG Chuanwei.FOA and improved D-S evidence theory for quadcopter obstacle identification[J].CAAI Transactions on Intelligent Systems,2020,15(3):499-506.[doi:10.11992/tis.201809011]
点击复制

果蝇算法和改进D-S证据理论的四轴飞行器障碍辨识

参考文献/References:
[1] 杨秀霞, 周硙硙, 张毅. 基于速度障碍圆弧法的UAV自主避障规划研究[J]. 系统工程与电子技术, 2017, 39(1): 165-176
YANG Xiuxia, ZHOU Weiwei, ZHANG Yi. Automatic obstacle avoidance planning for UAV based on velocity obstacle arc method[J]. Systems engineering and electronics, 2017, 39(1): 165-176
[2] 杨秀霞, 张毅, 周硙硙. 一种动态不确定环境下UAV自主避障算法[J]. 系统工程与电子技术, 2017, 39(11): 2546-2552
YANG Xiuxia, ZHANG Yi, ZHOU Weiwei. Autonomous obstacle avoidance algorithm for UAV in dynamic uncertain environment[J]. Systems engineering and electronics, 2017, 39(11): 2546-2552
[3] 关震宇, 杨东晓, 李杰, 等. 基于Dubins路径的无人机避障规则算法[J]. 北京理工大学学报, 2014, 34(6): 570-575.
GUAN Zhengyu, YANG Dongxiao, LI Jie, et. Obstacle avoidance planning algorithm for UAV based on Dubins path[J]. Transactions of Beijing Institute of Technology, 2014, 34(6): 570-575.
[4] 任佳, 高晓光, 张艳. 移动威胁情况下的无人机路径规划[J]. 控制理论与应用, 2010, 27(5): 641-646
REN Jia, GAO Xiaoguang, ZHANG Yan. Path planning based on model predictive control algorithm under moving threat[J]. Control theory & applications, 2010, 27(5): 641-646
[5] SCHMITTL, FICHTER W. Collision-avoidance framework for small fixed-wing unmanned aerial vehicles[J]. Journal of guidance, control, and dynamics, 2014, 37(4): 1323-1329.
[6] JENIE Y I, VAN KAMPEN E J, DE VISSER C C, et al. Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles[J]. Journal of guidance, control, and dynamics, 2015, 38(6): 1140-1145.
[7] 余超凡, 孙建辉. 基于光流传感器的旋翼无人机实时避障系统[J]. 计算机应用于软件, 2018, 35(1): 206-210
YU Caofang, SUN Jianhui. A real-time obstacle avoidance system for multi-rotor unmanned aerial vehicle based on optical flow sensor[J]. Computer applications and software, 2018, 35(1): 206-210
[8] 周源, 王希彬. 无人机SLAM避障技术研究[J]. 兵工自动化, 2015, 34(11): 78-81
ZHOU Yuan, WANG Xibin. Research on obstacles avoidance for UAV SLAM technology[J]. Ordnance industry automation, 2015, 34(11): 78-81
[9] 王伟, 王华. 基于约束人工势场法的弹载飞行器实时避障航迹规划[J]. 航空动力学, 2014, 29(7): 1738-1743
WANG Wei, WANG Hua. Real-time obstacle avoidance trajectory planning for missile borne air vehicle based on constrained artificial potential field method[J]. Journal of aerospace power, 2014, 29(7): 1738-1743
[10] [10] LIU Zhiyang, JIANG Tao. Route planning based on improved artificial potential field method[C]//Proceedings of 2017 Asia-Pacific Conference on Intelligent Robot System. Wuhan, China: IEEE, 2017: 196-199.
[11] ZHANG Yingkun. Flight path planning of agriculture UAV based on improved artificial potential field method[C]//Proceedings of 2018 Chinese Control and Decision Conference. Shenyang, China: IEEE, 2018: 1526-1530.
[12] BOUNINI F, GINGRAS D, POLLART H, et al. Modified artificial potential field method for online path planning applications[C]//Proceedings of 2017 IEEE Intelligent Vehicles Symposium. Los Angeles, USA: IEEE, 2017: 180-185.
[13] 赵海, 陈星池, 王家亮, 等. 基于四轴飞行器的单目视觉避障算法[J]. 光学精密工程, 2014, 22(8): 2232-2241
ZHAO Hai, CHEN Xingchi, WANG Jialiang, et al. Obstacle avoidance algorithm based on monocular vision for quad-rotor helicopter[J]. Optics and precision engineering, 2014, 22(8): 2232-2241
[14] MA Lili. Vision-based avoidance of obstacles with unknown constant velocity[C]//Proceedings of the 2010 American Control Conference. Baltimore, USA: IEEE, 2010: 5550-5555.
[15] 孙锐. 基于D-S证据理论的信息融合及在可靠性数据处理中的应用研究[D]. 成都: 电子科技大学, 2017.
SU Rui. Researche on D-S evidence theory based information fusion and its application in reliability data processing[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
[16] 刘标, 许腾, 李光. D-S证据理论改进算法提高水下目标识别准确性[J]. 现代防御技术, 2018, 46(1): 120-155
LIU Biao, XU Teng, LI Guang. Algorithm improvement of D-S evidence theory in submarine target recognition[J]. Modern defense technology, 2018, 46(1): 120-155
[17] 李昌钰, 周焰, 林菡, 等. 考虑传感器置信度的改进的D-S证据合成算法[J]. 解放军理工大学学报(自然科学版), 2017, 18(1): 81-86
LI Changyu, ZHOU Yan, LIN Han, et al. Improved D-S evidence combination rule based on reliability of sensors[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(1): 81-86
[18] 王慧, 宋宇宁. D-S证据理论在火灾检测中的应用[J]. 中国安全科学学报, 2016, 26(5): 19-23
WANG Hui, SONG Yuning. Application of D-S evidence theory in fire detection[J]. China safety science journal, 2016, 26(5): 19-23
[19] 李玲玲, 马冬娟, 王成山, 等. D-S证据理论冲突处理新方法[J]. 计算机应用研究, 2011, 28(12): 4528-4531
LI Lingling, MA Dongjuan, WANG Chengshan, et al. New method for conflict evidence processing in D-S theory[J]. Application research of computers, 2011, 28(12): 4528-4531
[20] 韩德强, 杨艺, 韩崇昭. D-S证据理论研究进展及相关问题探讨[J]. 控制与决策, 2014, 29(1): 1-11
HAN Deqiang, YANG Yi, HAN Chongzhao. Advances in DS evidence theory and related discussions[J]. Control and decision, 2014, 29(1): 1-11
[21] 袁杰, 王福利, 王姝, 等. 基于D-S融合的混合专家知识系统故障诊断方法[J]. 自动化学报, 2017, 43(9): 1580-1587
YUAN Jie, WANG Fuli, WANG Shu, et al. A fault diagnosis approach by D-S fusion theory and hybrid expert knowledge system[J]. Acta automatica sinica, 2017, 43(9): 1580-1587
[22] 刘海燕, 赵宗贵, 刘熹. D-S证据理论中冲突证据的合成方法[J]. 电子科技大学学报, 2008, 37(5): 701-704
LIU Haiyan, ZHAN Zhonggui, LIU Xi. Combination of conflict evidences in D-S theory[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(5): 701-704
[23] 王林, 吕盛祥, 曾宇容. 果蝇优化算法研究综述[J]. 控制与决策, 2015, 32(7): 1153-1162
WANG Lin, LYU Shengxiang, ZENG Yurong. Literature survey of fruit fly optimization algorithm[J]. Control and decision, 2015, 32(7): 1153-1162
[24] 饶盛华, 张小平, 张铸, 等. 基于果蝇算法的开关磁阻电机多目标优化研究[J]. 电子测量与仪器仪表学报, 2017, 31(7): 1152-1158
RONG Shenghua, ZHANG Xiaoping, ZHANG Zhu, et al. Study on multi-objective optimization of SRM based on FOA[J]. Journal of electronic measurement and instrumentation, 2017, 31(7): 1152-1158
[25] 徐湘寓, 崔颖强, 罗丽燕. 基于多传感器信息融合的室内定位算法研究[J]. 信息系统与网络, 2018, 48(1): 10-16
XU Xiangya, CUI Yingqiang, LUO Liyan. An indoor pedestrian localization algorithm based on multi-sensor information fusion[J]. Radio engineering, 2018, 48(1): 10-16
[26] 陈辉, 邓记才, 吴晓辉, 等. 多传感器信息融合在轮式机器人运动控制中的应用[J]. 传感技术学报, 2011, 24(6): 915-918
CHEN Hui, DENG Jicai, WU Xiaohui, et al. Implementation of the multisensory information fusion technology in the wheel-robot movement control[J]. Chinese journal of sensors and actuators, 2011, 24(6): 915-918
相似文献/References:
[1]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(5):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8():426.[doi:10.3969/j.issn.1673-4785.201301028]
[2]裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(1):90.[doi:10.3969/j.issn.1673-4785.201311018]
 PEI Zhenbing,CHEN Xuebo.Improved ant colony algorithm and its application in obstacle avoidance for robot[J].CAAI Transactions on Intelligent Systems,2015,10():90.[doi:10.3969/j.issn.1673-4785.201311018]
[3]王奎民,赵玉飞,侯恕萍,等.一种改进人工势场的UUV动碍航物规避方法[J].智能系统学报,2014,9(1):47.[doi:10.3969/j.issn.1673-4785.201309038]
 WANG Kuimin,ZHAO Yufei,HOU Shuping,et al.Dynamic obstacle avoidance for unmanned underwater vehiclebased on an improved artificial potential field[J].CAAI Transactions on Intelligent Systems,2014,9():47.[doi:10.3969/j.issn.1673-4785.201309038]
[4]蒲兴成,赵红全,张毅.细菌趋化行为的移动机器人路径规划[J].智能系统学报,2014,9(1):69.[doi:10.3969/j.issn.1673-4785.201305050]
 PU Xingcheng,ZHAO Hongquan,ZHANG Yi.Mobile robot path planning research based on bacterial chemotaxis[J].CAAI Transactions on Intelligent Systems,2014,9():69.[doi:10.3969/j.issn.1673-4785.201305050]
[5]罗京,刘成林,刘飞.多移动机器人的领航-跟随编队避障控制[J].智能系统学报,2017,12(2):202.[doi:10.11992/tis.201507029]
 LUO Jing,LIU Chenglin,LIU Fei.Piloting-following formation and obstacle avoidance control of multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2017,12():202.[doi:10.11992/tis.201507029]
[6]张飞,白伟,乔耀华,等.基于改进D*算法的无人机室内路径规划[J].智能系统学报,2019,14(4):662.[doi:10.11992/tis.201803031]
 ZHANG Fei,BAI Wei,QIAO Yaohua,et al.UAV indoor path planning based on improved D* algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():662.[doi:10.11992/tis.201803031]
[7]朱少凯,孟庆浩,金晟,等.基于深度强化学习的室内视觉局部路径规划[J].智能系统学报,2022,17(5):908.[doi:10.11992/tis.202107059]
 ZHU Shaokai,MENG Qinghao,JIN Sheng,et al.Indoor visual local path planning based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2022,17():908.[doi:10.11992/tis.202107059]
[8]张宏瀚,王亚博,李娟,等.近海复杂环境下UUV动态路径规划方法研究[J].智能系统学报,2024,19(1):114.[doi:10.11992/tis.202302028]
 ZHANG Honghan,WANG Yabo,LI Juan,et al.Dynamic path-planning method of UUV in an offshore complex environment[J].CAAI Transactions on Intelligent Systems,2024,19():114.[doi:10.11992/tis.202302028]

备注/Memo

收稿日期:2018-09-07。
作者简介:徐耀松,副教授,主要研究方向为煤矿瓦斯灾害前兆预测、电气线路故障诊断、工业远程监控系统开发、嵌入式系统设计。主持及参与国家自然科学基金、辽宁省教育厅基金、企业项目多项。辽宁省优秀青年骨干教师,获得辽宁省科技进步二等奖、中国煤炭工业协会科学技术二等奖、国家安全生产总局安全生产科技成果三等奖、阜新市科技进步一等奖、辽宁省普通高等教育本科教学成果三等奖。发表学术论文20余篇;王传为,硕士研究生,主要研究方向为信息处理与模式识别
通讯作者:王传为.E-mail:2415788230@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com