[1]黄庆康,宋恺涛,陆建峰.应用于不平衡多分类问题的损失平衡函数[J].智能系统学报,2019,14(5):953-958.[doi:10.11992/tis.201808004]
 HUANG Qingkang,SONG Kaitao,LU Jianfeng.Application of the loss balance function to the imbalanced multi-classification problems[J].CAAI Transactions on Intelligent Systems,2019,14(5):953-958.[doi:10.11992/tis.201808004]
点击复制

应用于不平衡多分类问题的损失平衡函数

参考文献/References:
[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[2] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77:354-377.
[3] JEATRAKUL P, WONG K W, FUNG C C. Using misclassification analysis for data cleaning[C]//Proceedings of International Workshop on Advanced Computational Intelligence and Intelligent Informatics. Tokyo, Japan, 2009:297?302.
[4] BATISTA G E A P A, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD explorations newsletter, 2004, 6(1):20-29.
[5] XIAO Jianxiong, HAYS J, EHINGER K A, et al. SUN database:Large-scale scene recognition from abbey to zoo[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:3485?3492.
[6] GRZYMALA-BUSSE J W, GOODWIN L K, GRZYMALA-BUSSE W J, et al. An approach to imbalanced data sets based on changing rule strength[M]//PAL S K, POLKOWSKI L, SKOWRON A. Rough-Neural Computing. Berlin, Heidelberg:Springer, 2004:543?553.
[7] JAPKOWICZ N, STEPHEN S. The class imbalance problem:A systematic study[J]. Intelligent data analysis, 2002, 6(5):429-449.
[8] MORENO-TORRES J G, HERRERA F. A preliminary study on overlapping and data fracture in imbalanced domains by means of Genetic Programming-based feature extraction[C]//Proceedings of the 201010th International Conference on Intelligent Systems Design and Applications. Cairo, Egypt, 2014:501?506.
[9] WANG K J, MAKOND B, CHEN Kunhuang, et al. A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients[J]. Applied soft computing, 2014, 20:15-24.
[10] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16(1):321-357.
[11] KOPLOWITZ J, BROWN T A. On the relation of performance to editing in nearest neighbor rules[J]. Pattern recognition, 1981, 13(3):251-255.
[12] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135:32-41.
[13] ELKAN C. The foundations of cost-sensitive learning[C]//Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence. San Francisco, USA, 2001:973?978.
[14] ZHOU Zhihua, LIU Xuying. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE transactions on knowledge and data engineering, 2006, 18(1):63-77.
[15] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 1:2999-3007.
[16] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, massachusetts:MIT press, 2016:218?227.
[17] LI Feifei, FERGUS R, PERONA P. Learning generative visual models from few training examples:an incremental Bayesian approach tested on 101 object categories[J]. Computer vision and image understanding, 2007, 106(1):59-70.
[18] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3):211-252.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA, 2016:770?778.
[20] ESPíNDOLA R P, EBECKEN N F F. On extending F-measure and G-mean metrics to multi-class problems[M]//ZANASI A, BREBBIA C A, EBECKEN N F F. Data Mining VI Data Mining, Text Mining and Their Business Applications. Southampton:WIT Press, 2005, 25?34.
相似文献/References:
[1]胡小生,钟勇.基于加权聚类质心的SVM不平衡分类方法[J].智能系统学报,2013,8(3):261.
 HU Xiaosheng,ZHONG Yong.Support vector machine imbalanced data classification based on weighted clustering centroid[J].CAAI Transactions on Intelligent Systems,2013,8():261.
[2]石洪波,陈雨文,陈鑫.SMOTE过采样及其改进算法研究综述[J].智能系统学报,2019,14(6):1073.[doi:10.11992/tis.201906052]
 SHI Hongbo,CHEN Yuwen,CHEN Xin.Summary of research on SMOTE oversampling and its improved algorithms[J].CAAI Transactions on Intelligent Systems,2019,14():1073.[doi:10.11992/tis.201906052]

备注/Memo

收稿日期:2018-08-07。
作者简介:黄庆康,男,1994年生,硕士研究生,主要研究方向为图像分类、广告推荐;宋恺涛,男,1993年生,博士,主要研究方向为数据挖掘、推荐系统;陆建峰,男,1969年生,教授,主要研究方向为模式识别。参与过近20项省部级课题,获各类省部级科技进步奖9项。发表学术论文80余篇。
通讯作者:黄庆康.E-mail:kencon@foxmail.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com