[1]凌彤,杨琬琪,杨明.利用多模态U形网络的CT图像前列腺分割[J].智能系统学报,2018,13(6):981-988.[doi:10.11992/tis.201806012]
LING Tong,YANG Wanqi,YANG Ming.Prostate segmentation in CT images with multimodal U-net[J].CAAI Transactions on Intelligent Systems,2018,13(6):981-988.[doi:10.11992/tis.201806012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第6期
页码:
981-988
栏目:
学术论文—机器感知与模式识别
出版日期:
2018-10-25
- Title:
-
Prostate segmentation in CT images with multimodal U-net
- 作者:
-
凌彤, 杨琬琪, 杨明
-
南京师范大学 计算机科学与技术学院, 江苏 南京 210023
- Author(s):
-
LING Tong, YANG Wanqi, YANG Ming
-
School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China
-
- 关键词:
-
计算机断层扫描图像; 核磁共振成像; 深度学习; 多模态U形网络; 单模态U形网络; 迁移学习; 损失函数; 前列腺分割
- Keywords:
-
CT; MRI; deep learning; multimodal U-net; single modal U-net; transfer learning; loss function; prostate segmentation
- 分类号:
-
TP18;R318
- DOI:
-
10.11992/tis.201806012
- 摘要:
-
计算机断层扫描(computed tomography,CT)可应用于前列腺癌的检查诊断,但是它对软组织结构对比度不高,因此很难从中分割病变;而核磁共振成像(nuclear magnetic resonance imaging,MRI)具有较高的对比度,能为病变提供丰富的影像信息。为了提升CT图像的前列腺分割精度,本文提出一种新的基于深度学习的多模态U形网络图像分割模型MM-unet,充分运用MRI图像与CT图像间信息互补的特点。具体地,首先运用迁移学习思想分别训练MRI与CT图像的初始分割模型,然后通过设计一种新型的多模态损失函数MM-Loss,建立不同模态分割模型之间的联系,联合训练基于MRI与CT图像的MM-unet。为验证所提模型MM-unet的有效性,我们在某合作医院提供的Prostate数据集上进行了实验,实验结果表明,与U-net方法相比,MM-unet能够获得高出3个百分点Dice的CT图像分割精度。
- Abstract:
-
Computed tomography (CT) can be applied to prostate cancer diagnosis; however, it is not effective for the visualization of soft tissues structures because of the resulting low contrast, and thus, it is difficult to perform accurate prostate segmentation in CT images. Contrarily, nuclear magnetic resonance imaging (MRI) provides a relatively high contrast to soft tissues, which can provide rich image information for prostate segmentation. To improve the accuracy of prostate segmentation in CT images, a novel multimodal U-net (MM-unet) is proposed based on deep learning, which fully utilizes the complementary information between MRI and CT images. A transfer learning method is first applied to train the initial segmentation model parameters for segmenting MRI and CT images, and then a novel multimodal loss function MM-Loss is proposed to connect the segmentation models between different modalities, jointly training the proposed MM-unet in paired MRI and CT images. To validate the effectiveness of the proposed MM-unet, we carried out experiments on the prostate dataset provided by our allied hospital. The experimental results show that MM-unet can achieve 3% higher Dice than U-net for prostate segmentation in CT images.
备注/Memo
收稿日期:2018-06-06。
基金项目:国家自然科学基金项目(61603193,61432008);江苏省自然科学基金面上项目(BK20171479);江苏省博士后科学基金(1701157B).
作者简介:凌彤,女,1994年生,硕士研究生,主要研究方向为深度学习、医学图像分割。;杨琬琪,女,1988年生,讲师,主要研究方向为机器学习、模式识别、计算机视觉。近年来在IEEE TNNLS、IEEE TCyb、CVIU、IJCAI、ACM MM、MICCAI等国际学术期刊和学术会议上发表论文16篇,均被SCI、EI检索;杨明,男,1964年生,教授,博士生导师,主要研究方向为数据库技术与数据挖掘技术、模式识别、机器学习。授权国家发明专利3项。发表学术论文100余篇,其中被SCI、EI、ISTP检索60余篇。
通讯作者:杨琬琪.E-mail:yangwq@njnu.edu.cn
更新日期/Last Update:
2018-12-25