[1]王一宾,裴根生,程玉胜.弹性网络核极限学习机的多标记学习算法[J].智能系统学报,2019,14(4):831-842.[doi:10.11992/tis.201806005]
 WANG Yibin,PEI Gensheng,CHENG Yusheng.Multi-label learning algorithm of an elastic net kernel extreme learning machine[J].CAAI Transactions on Intelligent Systems,2019,14(4):831-842.[doi:10.11992/tis.201806005]
点击复制

弹性网络核极限学习机的多标记学习算法

参考文献/References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[2] SCHAPIRE R E, SINGER Y. BoosTexter:a boosting-based system for text categorization[J]. Machine learning, 2000, 39(2/3):135-168.
[3] AGRAWAL S, AGRAWAL J, KAUR S, et al. A comparative study of fuzzy PSO and fuzzy SVD-based RBF neural network for multi-label classification[J]. Neural computing and applications, 2018, 29(1):245-256.
[4] BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern recognition, 2004, 37(9):1757-1771.
[5] GUAN Renchu, WANG Xu, YANG M Q, et al. Multi-label deep learning for gene function annotation in cancer pathways[J]. Scientific reports, 2018, 8(1):267.
[6] TOMAR D, AGARWAL S. Multi-label classifier for emotion recognition from music[C]//Proceedings of the 3rd International Conference on Advanced Computing, Networking and Informatics. New Delhi, India:Springer, 2016:111-123.
[7] READ J, PFAHRINGER B, HOLMES G. Multi-label classification using ensembles of pruned sets[C]//Proceedings of the Eighth IEEE International Conference on Data Mining. Pisa:IEEE, 2008:995-1000.
[8] READ J. A pruned problem transformation method for multi-label classification[C]//Proceedings of 2008 New Zealand Computer Science Research Student Conference. Christchurch, New Zealand:NZCSRS, 2008:143-150.
[9] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets:an ensemble method for multilabel classification[C]//Proceedings of the 18th European Conference on Machine Learning. Warsaw, Poland:Springer, 2007:406-417.
[10] ZHANG Minling, ZHOU Zhihua. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7):2038-2048.
[11] ZHANG Minling, PE?A J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information sciences, 2009, 179(19):3218-3229.
[12] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada:MIT Press, 2001:681-687.
[13] ZHANG Minling. ML-RBF:RBF neural networks for multi-label learning[J]. Neural processing letters, 2009, 29(2):61-74.
[14] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[15] 邓万宇, 郑庆华, 陈琳, 等. 神经网络极速学习方法研究[J]. 计算机学报, 2010, 33(2):279-287 DENG Wanyu, ZHENG Qinghua, CHEN Lin, et al. Research on extreme learning of neural networks[J]. Chinese journal of computers, 2010, 33(2):279-287
[16] MICHE Y, VAN HEESWIJK M, BAS P, et al. TROP-ELM:a double-regularized ELM using LARS and Tikhonov regularization[J]. Neurocomputing, 2011, 74(16):2413-2421.
[17] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2012, 42(2):513-529.
[18] ER M J, VENKATESAN R, WANG Ning. A high speed multi-label classifier based on extreme learning machines[C]//Proceedings of ELM-2015 Volume 2:Theory, Algorithms and Applications. Cham:Springer International Publishing, 2016.
[19] SUN Xia, XU Jingting, JIANG Changmeng, et al. Extreme learning machine for multi-label classification[J]. Entropy, 2016, 18(6):225.
[20] ZHANG Nan, DING Shifei, ZHANG Jian. Multi layer ELM-RBF for multi-label learning[J]. Applied soft computing, 2016, 43:535-545.
[21] LUO Fangfang, GUO Wenzhong, YU Yuanlong, et al. A multi-label classification algorithm based on kernel extreme learning machine[J]. Neurocomputing, 2017, 260:313-320.
[22] HAN Yahong, WU Fei, ZHUANG Yueting, et al. Multi-label transfer learning with sparse representation[J]. IEEE transactions on circuits and systems for video technology, 2010, 20(8):1110-1121.
[23] ZOU Hui, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society:series B (statistical methodology), 2005, 67(2):301-320.
[24] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. Journal of statistical software, 2010, 33(1):1-22.
[25] ZHOU Zhihua, ZHANG Minling. Multi-label learning[M]//SAMMUT C, WEBB G I. Encyclopedia of Machine Learning and Data Mining. Boston, MA:Springer, 2017:875-881
[26] WRIGHT S J. Coordinate descent algorithms[J]. Mathematical programming, 2015, 151(1):3-34.
[27] DONOHO D L. De-noising by soft-thresholding[J]. IEEE transactions on information theory, 1995, 41(3):613-627.
[28] FRIEDMAN J, HASTIE T, H?FLING H, et al. Pathwise coordinate optimization[J]. The annals of applied statistics, 2007, 1(2):302-332.
[29] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of machine learning research, 2006, 7:1-30.
相似文献/References:
[1]刘杨磊,梁吉业,高嘉伟,等.基于Tri-training的半监督多标记学习算法[J].智能系统学报,2013,8(5):439.[doi:10.3969/j.issn.1673-4785.201305033]
 LIU Yanglei,LIANG Jiye,GAO Jiawei,et al.Semi-supervised multi-label learning algorithm based on Tri-training[J].CAAI Transactions on Intelligent Systems,2013,8():439.[doi:10.3969/j.issn.1673-4785.201305033]
[2]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[3]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14():566.[doi:10.11992/tis.201804056]
[4]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14():929.[doi:10.11992/tis.201807027]
[5]查思明,鲍庆森,骆健,等.自适应标记关联与实例关联诱导的缺失多视图弱标记学习[J].智能系统学报,2022,17(4):670.[doi:10.11992/tis.202106017]
 ZHA Siming,BAO Qingsen,LUO Jian,et al.Adaptive label correlation and instance correlation guided incomplete multiview weak label learning[J].CAAI Transactions on Intelligent Systems,2022,17():670.[doi:10.11992/tis.202106017]
[6]秦天,滕齐发,贾修一.结合局部标记序关系的弱监督标记分布学习[J].智能系统学报,2023,18(1):47.[doi:10.11992/tis.202204018]
 QIN Tian,TENG Qifa,JIA Xiuyi.Weakly supervised label distribution learning by maintaining local label ranking[J].CAAI Transactions on Intelligent Systems,2023,18():47.[doi:10.11992/tis.202204018]
[7]胡军,王海峰.基于加权信息粒化的多标记数据特征选择算法[J].智能系统学报,2023,18(3):619.[doi:10.11992/tis.202111058]
 HU Jun,WANG Haifeng.Feature selection algorithm of multi-labeled data based on weighted information granulation[J].CAAI Transactions on Intelligent Systems,2023,18():619.[doi:10.11992/tis.202111058]

备注/Memo

收稿日期:2018-06-02。
基金项目:安徽省高校重点科研项目(KJ2017A352);安徽省高校重点实验室基金项目(ACAIM160102).
作者简介:王一宾,男,1970年生,教授,主要研究方向为多标记学习、机器学习、软件安全。主持安徽省教育厅重点项目多项,发表学术论文20余篇;裴根生,男,1992年生,硕士研究生,主要研究方向为机器学习、数据挖掘、统计;程玉胜,男,1969年生,教授,博士,主要研究方向为数据挖掘、机器学习。主持省自然科学基金项目1项、省教育厅项目多项,发表学术论文50余篇。
通讯作者:程玉胜.E-mail:chengyshaq@163.com

更新日期/Last Update: 2019-08-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com