[1]程康明,熊伟丽.一种双优选的半监督回归算法[J].智能系统学报,2019,14(4):689-696.[doi:10.11992/tis.201805010]
 CHENG Kangming,XIONG Weili.A dual-optimal semi-supervised regression algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(4):689-696.[doi:10.11992/tis.201805010]
点击复制

一种双优选的半监督回归算法

参考文献/References:
[1] 周志华. 基于分歧的半监督学习[J]. 自动化学报, 2013, 39(11):1871-1878 ZHOU Zhihua. Disagreement-based semi-supervised learning[J]. Acta Automatica Sinica, 2013, 39(11):1871-1878
[2] ZHOU Zhihua, LI Ming. Semisupervised regression with cotraining-style algorithms[J]. IEEE Transactions on knowledge and data engineering, 2007, 19(11):1479-1493.
[3] 姜婷, 袭肖明, 岳厚光. 基于分布先验的半监督FCM的肺结节分类[J]. 智能系统学报, 2017, 12(5):729-734 JIANG Ting, XI Xiaoming, YUE Houguang. Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J]. CAAI transactions on intelligent systems, 2017, 12(5):729-734
[4] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015, 38(8):1592-1617 LIU Jianwei, LIU Yuan, LUO Xionglin. Semi-supervised learning methods[J]. Chinese journal of computers, 2015, 38(8):1592-1617
[5] 刘杨磊, 梁吉业, 高嘉伟, 等. 基于Tri-training的半监督多标记学习算法[J]. 智能系统学报, 2013, 8(5):439-445 LIU Yanglei, LIANG Jiye, GAO Jiawei, et al. Semi-supervised multi-label learning algorithm based on Tri-training[J]. CAAI Transactions on intelligent systems, 2013, 8(5):439-445
[6] 徐蓉, 姜峰, 姚鸿勋. 流形学习概述[J]. 智能系统学报, 2006, 1(1):44-51 XU Rong, JIANG Feng, YAO Hongxun. Overview of manifold learning[J]. CAAI transactions on intelligent systems, 2006, 1(1):44-51
[7] 杨剑, 王珏, 钟宁. 流形上的Laplacian半监督回归[J]. 计算机研究与发展, 2007, 44(7):1121-1127 YANG Jian, WANG Jue, ZHONG Ning. Laplacian semi-supervised regression on a manifold[J]. Journal of computer research and development, 2007, 44(7):1121-1127
[8] ZHOU Zhihua, LI Ming. Semi-supervised regression with co-training[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. Edinburgh, Scotland, UK, 2005:908-913.
[9] 程玉虎, 冀杰, 王雪松. 基于Help-Training的半监督支持向量回归[J]. 控制与决策, 2012, 27(2):205-210, 226 CHENG Yuhu, JI Jie, WANG Xuesong. Semi-supervised support vector regression based on Help-Training[J]. Control and decision, 2012, 27(2):205-210, 226
[10] 盛高斌, 姚明海. 基于半监督回归的选择性集成算法[J]. 计算机仿真, 2009, 26(10):198-201, 318 SHENG Gaobin, YAO Minghai. An ensemble selection algorithm based on semi-supervised regression[J]. Computer simulation, 2009, 26(10):198-201, 318
[11] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8):1121-1129, 1137 HE Zhikun, LIU Guangbin, ZHAO Xijing, et al. Overview of Gaussian process regression[J]. Control and decision, 2013, 28(8):1121-1129, 1137
[12] 熊伟丽, 李妍君, 姚乐, 等. 一种动态校正的AGMM-GPR多模型软测量建模方法[J]. 大连理工大学学报, 2016, 56(1):77-85 XIONG Weili, LI Yanjun, YAO Le, et al. A dynamically corrected AGMM-GPR multi-model soft sensor modeling method[J]. Journal of Dalian University of Technology, 2016, 56(1):77-85
[13] 郭帅, 马书根, 李斌, 等. VorSLAM算法中基于多规则的数据关联方法[J]. 自动化学报, 2013, 39(6):883-894 GUO Shuai, MA Shugen, LI Bin, et al. A data association approach based on multi-rules in VorSLAM[J]. Acta automatica sinica, 2013, 39(6):883-894
[14] KNORR E M, NG R T. A unified notion of outliers:properties and computation[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Newport Beach, CA, USA, 1997:219-222.
[15] 曾静, 王军, 郭金玉. 基于向量相似度的多模型局部建模方法研究[J]. 计算机应用研究, 2012, 29(5):1631-1633, 1640 ZENG Jing, WANG Jun, GUO Jinyu. Local multi-model method based on similarity of vector[J]. Application research of computers, 2012, 29(5):1631-1633, 1640
[16] 阮宏镁, 田学民, 王平. 基于联合互信息的动态软测量方法[J]. 化工学报, 2014, 65(11):4497-4502 RUAN Hongmei, TIAN Xuemin, WANG Ping. Dynamic soft sensor method based on joint mutual information[J]. CIESC journal, 2014, 65(11):4497-4502
[17] FORTUNA L, GRAZIANI S, RIZZO A, et al. Soft sensors for monitoring and control of industrial processes[M]. London:Springer, 2007:229-231.
相似文献/References:
[1]程康明,熊伟丽.一种自训练框架下的三优选半监督回归算法[J].智能系统学报,2020,15(3):568.[doi:10.11992/tis.201905033]
 CHENG Kangming,XIONG Weili.Three-optimal semi-supervised regression algorithm under self-training framework[J].CAAI Transactions on Intelligent Systems,2020,15():568.[doi:10.11992/tis.201905033]

备注/Memo

收稿日期:2018-05-09。
基金项目:国家自然科学基金项目(61773182,60712228);江苏省自然科学基金项目(BK20170198).
作者简介:程康明,男,1993年生,硕士研究生,主要研究方向为工业过程建模;熊伟丽, 女,1978年生,教授,博士,主要研究方向为复杂工业过程建模及优化、智能优化算法及应用。主持国家自然科学基金面上项目、江苏省产学研等纵向项目8项;参与国家863计划、重点研发计划等多项。发表研究学术论文60余篇。
通讯作者:熊伟丽.E-mail:greenpre@163.com

更新日期/Last Update: 2019-08-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com