[1]董旭德,许源平,舒红平,等.基于质心分水岭算法的静态手势分割算法模型[J].智能系统学报,2019,14(2):346-354.[doi:10.11992/tis.201804028]
DONG Xude,XU Yuanping,SHU Hongping,et al.Static gesture segmentation algorithm model based on centroid watershed algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(2):346-354.[doi:10.11992/tis.201804028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第2期
页码:
346-354
栏目:
学术论文—机器学习
出版日期:
2019-03-05
- Title:
-
Static gesture segmentation algorithm model based on centroid watershed algorithm
- 作者:
-
董旭德1, 许源平1, 舒红平1, 张朝龙1,2, 卢丽1, 黄健1
-
1. 成都信息工程大学 软件工程学院, 四川 成都 610225;
2. 英国哈德斯菲尔德大学 计算与工程学院, 西约克郡 哈德斯菲尔德 HD1 3DH
- Author(s):
-
DONG Xude1, XU Yuanping1, SHU Hongping1, ZHANG Chaolong1,2, LU Li1, HUANG Jian1
-
1. School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
2. School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
-
- 关键词:
-
类肤色背景; 静态手势分割; ICWA算法; 手腕分割; 手势识别; 凸性检测; PCA降维; 深度学习
- Keywords:
-
skin-like background; static gesture segmentation; ICWA algorithm; wrist segmentation; gesture recognition; convexity detection; PCA dimension reduction; deep learning
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201804028
- 摘要:
-
为了解决在类肤色背景下难以从图像中高效地分割出完整静态手势的问题,提出了基于质心分水岭算法(improved centroid watershed algorithm,ICWA)的静态手势分割模型。该ICWA算法可以有效地减少图像梯度对手势分割的影响并完整地提取出肤色区域。此外,本文设计了一种将PCA (principal component analysis)降维和凸性检测算法相结合的方法,可以根据对凸点准确提取手腕的割线。同时,利用卷积神经网络(convolutional neural networks,CNN)在标准数据库上进行了初步的手势自动识别实验。实验结果表明:该分割模型对于9种静态手势的平均识别率达到了97.85%。
- Abstract:
-
Considering the difficulty in effectively achieving complete static gesture segmentations from skin-like background regions, this paper proposes an integrated static gesture segmentation model based on an improved centroid watershed algorithm (ICWA). The ICWA algorithm significantly reduces the interference of image gradient on gesture segmentations such that it can completely extract skin regions from images. Moreover, a novel method is designed and implemented by integrating principal component analysis (PCA) dimension reduction and convexity detection algorithms, which can accurately extract the cutting line of the wrist according to convex points. Preliminary experiments of automatic gesture recognitions based on convolutional neural network (CNN) were carried out on a benchmark database. The experimental results show that the proposed model can achieve a recognition rate of 97.85% on average for nine different static gestures.
备注/Memo
收稿日期:2018-04-18。
基金项目:国家自然科学基金项目(61203172);四川省科技厅应用基础项目(2018JY0146,2019YFH0187);深圳市重大国际合作项目(GJHZ20160301164521358).
作者简介:董旭德,男,1994年生,硕士研究生,主要研究方向为计算机视觉、机器学习与深度学习网络。;许源平,男,1980年生,教授,主要研究方向为智能制造专家系统、知识库与知识工程、机器视觉。主持国家自然科学基金和四川省科技项目8项。发表学术论文50余篇。;舒红平,男,1974年生,教授,博士生导师,主要研究方向为软件开发环境与智能服务大数据。主持和参与了国家自然科学基金、9项973课题、四川省科技支撑计划项目、四川省青年科技基金等纵向项目12项。发表核心期刊以上论文近40篇。
通讯作者:许源平.E-mail:ypxu@cuit.edu.cn
更新日期/Last Update:
2019-04-25