[1]梁丽君,李业刚,张娜娜,等.融合用户特征优化聚类的协同过滤算法[J].智能系统学报,2020,15(6):1091-1096.[doi:10.11992/tis.201710024]
 LIANG Lijun,LI Yegang,ZHANG Nana,et al.Collaborative filtering algorithm combining user features and preferences in optimized clustering[J].CAAI Transactions on Intelligent Systems,2020,15(6):1091-1096.[doi:10.11992/tis.201710024]
点击复制

融合用户特征优化聚类的协同过滤算法

参考文献/References:
[1] 王国霞, 刘贺平. 个性化推荐系统综述[J]. 计算机工程与应用, 2012, 48(7): 66-76
WANG Guoxia, LIU Heping. Survey of personalized recommendation system[J]. Computer engineering and applications, 2012, 48(7): 66-76
[2] Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks[C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Barcelona, Spain,2011:2644-2649.
[3] WEI Jian, HE Jianhua, CHEN Kai, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert systems with applications, 2017, 69: 29-39.
[4] AGGARWAL C C. An introduction to data mining[M]//AGGARWAL C C. Data Mining: the Textbook. Cham: Springer, 2015: 1-26.
[5] 孙天昊, 黎安能, 李明, 等. 基于Hadoop分布式改进聚类协同过滤推荐算法研究[J]. 计算机工程与应用, 2015, 51(15): 124-128
SUN Tianhao, LI Anneng, LI Ming, et al. Study on distributed improved clustering collaborative filtering algorithm based on Hadoop[J]. Computer engineering and applications, 2015, 51(15): 124-128
[6] 胡勋, 孟祥武, 张玉洁, 等. 一种融合项目特征和移动用户信任关系的推荐算法[J]. 软件学报, 2014, 25(8): 1817-1830
HU Xun, MENG Xiangwu, ZHANG Yujie, et al. Recommendation algorithm combing item features and trust relationship of mobile users[J]. Journal of software, 2014, 25(8): 1817-1830
[7] LIU Haifeng, HU Zheng, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-based systems, 2014, 56: 156-166.
[8] 韦素云, 肖静静, 业宁. 基于联合聚类平滑的协同过滤算法[J]. 计算机研究与发展, 2013, 50(S2): 163-169
WEI Suyun, XIAO Jingjing, YE Ning. Collaborative filtering algorithm based on co-clustering smoothing[J]. Journal of computer research and development, 2013, 50(S2): 163-169
[9] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
[10] ELKAHKY A M, SONG Yang, HE Xiaodong. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2015: 278-288.
[11] 陈克寒, 韩盼盼, 吴健. 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报, 2013, 36(2): 349-359
CHEN Kehan, HAN Panpan, WU Jian. User clustering based social network recommendation[J]. Chinese journal of computers, 2013, 36(2): 349-359
[12] 张顺龙, 库涛, 周浩. 针对多聚类中心大数据集的加速K-means聚类算法[J]. 计算机应用研究, 2016, 33(2): 413-416
ZHANG Shunlong, KU Tao, ZHOU Hao. Accelerate K-means for multi-center clustering of big datasets[J]. Application research of computers, 2016, 33(2): 413-416
[13] 贾洪杰, 丁世飞, 史忠植. 求解大规模谱聚类的近似加权核K-means算法[J]. 软件学报, 2015, 26(11): 2836-2846
JIA Hongjie, DING Shifei, SHI Zhongzhi. Approximate weighted kernel K-means for large-scale spectral clustering[J]. Journal of software, 2015, 26(11): 2836-2846
[14] DRAISMA J, HOROBET E, OTTAVIANI G, et al. The Euclidean distance degree of an algebraic variety[J]. Foundations of computational mathematics, 2016, 16(1): 99-149.
相似文献/References:
[1]黄立威,李德毅.社交媒体中的信息推荐[J].智能系统学报,2012,7(1):1.
 HUANG Liwei,LI Deyi.A review of information recommendation in social media[J].CAAI Transactions on Intelligent Systems,2012,7():1.
[2]李慧,马小平,胡云,等.融合上下文信息的社会网络推荐系统[J].智能系统学报,2015,10(2):293.[doi:10.3969/j.issn.1673-4785.201406017]
 LI Hui,MA Xiaoping,HU Yun,et al.Social network recommendaton system mixing contex information[J].CAAI Transactions on Intelligent Systems,2015,10():293.[doi:10.3969/j.issn.1673-4785.201406017]
[3]沈苗,来天平,王素美,等.北京大学课程推荐引擎的设计和实现[J].智能系统学报,2015,10(3):369.[doi:10.3969/j.issn.1673-4785.201409045]
 SHEN Miao,LAI Tianping,WANG Sumei,et al.Design and implementation of the course recommendation engine in Peking University[J].CAAI Transactions on Intelligent Systems,2015,10():369.[doi:10.3969/j.issn.1673-4785.201409045]
[4]郭少成,陈松灿.稀疏化的因子分解机[J].智能系统学报,2017,12(6):816.[doi:10.11992/tis.201706030]
 GUO Shaocheng,CHEN Songcan.Sparsified factorization machine[J].CAAI Transactions on Intelligent Systems,2017,12():816.[doi:10.11992/tis.201706030]
[5]陈君同,古天龙,常亮,等.融合协同过滤与用户偏好的旅游组推荐方法[J].智能系统学报,2018,13(6):999.[doi:10.11992/tis.201802011]
 CHEN Juntong,GU Tianlong,CHANG Liang,et al.A tourist group recommendation method combining collaborative filtering and user preferences[J].CAAI Transactions on Intelligent Systems,2018,13():999.[doi:10.11992/tis.201802011]
[6]常亮,张伟涛,古天龙,等.知识图谱的推荐系统综述[J].智能系统学报,2019,14(2):207.[doi:10.11992/tis.201805001]
 CHANG Liang,ZHANG Weitao,GU Tianlong,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14():207.[doi:10.11992/tis.201805001]
[7]顾军华,谢志坚,武君艳,等.基于图游走的并行协同过滤推荐算法[J].智能系统学报,2019,14(4):743.[doi:10.11992/tis.201806002]
 GU Junhua,XIE Zhijian,WU Junyan,et al.Parallel collaborative filtering recommendation algorithm based on graph walk[J].CAAI Transactions on Intelligent Systems,2019,14():743.[doi:10.11992/tis.201806002]
[8]涂飞.多特征融合的兴趣点推荐算法[J].智能系统学报,2019,14(4):779.[doi:10.11992/tis.201801048]
 TU Fei.A point of interest recommendation algorithm based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2019,14():779.[doi:10.11992/tis.201801048]
[9]孟祥福,齐雪月,张全贵,等.用户-兴趣点耦合关系的兴趣点推荐方法[J].智能系统学报,2021,16(2):228.[doi:10.11992/tis.201907034]
 MENG Xiangfu,QI Xueyue,ZHANG Quangui,et al.A POI recommendation approach based on user-POI coupling relationships[J].CAAI Transactions on Intelligent Systems,2021,16():228.[doi:10.11992/tis.201907034]
[10]鲍维克,袁春.面向推荐系统的分期序列自注意力网络[J].智能系统学报,2021,16(2):353.[doi:10.11992/tis.202005028]
 BAO Weike,YUAN Chun.Recommendation system with long-term and short-term sequential self-attention network[J].CAAI Transactions on Intelligent Systems,2021,16():353.[doi:10.11992/tis.202005028]
[11]马钰,张岩,王宏志,等.面对智能导诊的个性化推荐算法[J].智能系统学报,2018,13(3):352.[doi:10.11992/tis.201711036]
 MA Yu,ZHANG Yan,WANG Hongzhi,et al.A personalized recommendation algorithm for intelligent guidance[J].CAAI Transactions on Intelligent Systems,2018,13():352.[doi:10.11992/tis.201711036]
[12]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[13]王健宗,肖京,朱星华,等.联邦推荐系统的协同过滤冷启动解决方法[J].智能系统学报,2021,16(1):178.[doi:10.11992/tis.202009032]
 WANG Jianzong,XIAO Jing,ZHU Xinghua,et al.Cold starts in collaborative filtering for federated recommender systems[J].CAAI Transactions on Intelligent Systems,2021,16():178.[doi:10.11992/tis.202009032]
[14]马甜甜,杨长春,严鑫杰,等.融合知识图谱和轻量级图卷积网络推荐系统的研究[J].智能系统学报,2022,17(4):721.[doi:10.11992/tis.202107016]
 MA Tiantian,YANG Changchun,YAN Xinjie,et al.Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J].CAAI Transactions on Intelligent Systems,2022,17():721.[doi:10.11992/tis.202107016]
[15]朱金侠,孟祥福,邢长征,等.融合社交关系的轻量级图卷积协同过滤推荐方法[J].智能系统学报,2022,17(4):788.[doi:10.11992/tis.202107031]
 ZHU Jinxia,MENG Xiangfu,XING Changzheng,et al.Light graph convolutional collaborative filtering recommendation approach incorporating social relationships[J].CAAI Transactions on Intelligent Systems,2022,17():788.[doi:10.11992/tis.202107031]
[16]许昌林,徐浩.基于Hellinger距离的正态云相似性度量方法及应用研究[J].智能系统学报,2023,18(6):1312.[doi:10.11992/tis.202209042]
 XU Changlin,XU Hao.Similarity measurement method for normal cloud based on Hellinger distance and its application[J].CAAI Transactions on Intelligent Systems,2023,18():1312.[doi:10.11992/tis.202209042]
[17]史加荣,何攀.结合矩阵补全的宽度协同过滤推荐算法[J].智能系统学报,2024,19(2):299.[doi:10.11992/tis.202209005]
 SHI Jiarong,HE Pan.Broad collaborative filtering recommendation algorithm combined with matrix completion[J].CAAI Transactions on Intelligent Systems,2024,19():299.[doi:10.11992/tis.202209005]

备注/Memo

收稿日期:2017-10-29。
基金项目:国家自然科学基金项目(61671064)
作者简介:梁丽君,硕士研究生,主要研究方向为个性化推荐系统;李业刚,副教授,博士,中文信息学会会员,主要研究方向为语言信息处理、机器学习、机器翻译、社交网络和跨语言信息检索。申请发明专利多项,发表学术论文10余篇;张娜娜,硕士研究生,主要研究方向为自然语言处理
通讯作者:李业刚.E-mail:liyegang@sdut.edu.cn

更新日期/Last Update: 2020-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com