[1]牛德姣,刘亚文,蔡涛,等.基于递归神经网络的跌倒检测系统[J].智能系统学报,2018,13(3):380-387.[doi:10.11992/tis.201710013]
 NIU Dejiao,LIU Yawen,CAI Tao,et al.Fall detection system based on recurrent neural network[J].CAAI Transactions on Intelligent Systems,2018,13(3):380-387.[doi:10.11992/tis.201710013]
点击复制

基于递归神经网络的跌倒检测系统

参考文献/References:
[1] 吴天昊. 基于3轴加速度传感器及陀螺仪的老年人摔倒识别[D]. 北京:北京工业大学, 2013:2-3. WU Tianhao. Identification of old people ’s fall-downing based on 3-axis acceleration sensor and gyroscope[D]. Beijing, China:Beijing University of Technology, 2013:2-3.
[2] ROUGIER C, MEUNIER J, ST-ARNAUD A. 3D head tracking for fall-down detection using a single calibrated camera[J]. Image and Vision Computing, 2013, 31(3):246-254.
[3] MUBASHIR M, SHAO L, SEED L. A survey on fall-down detection:Principles and approaches[J]. Neurocomputing, 2013, 100(2):144-152.
[4] MATHIE M J, BASILAKIS J, CELLER B G. A system for monitoring posture and physical activity using accelerometers[C]//International Conference of the IEEE Engineering in Medicine and Biology Society. Istanbul, Turkey, 2001:3654-3657.
[5] 卢先领, 王洪斌, 王莹莹, 等. 一种基于加速度传感器的人体跌倒识别方法[J]. 计算机应用研究, 2013, 30(4):1109-1111. LU Xianling, WANG Hongbin, WANG Yingying, et al. Human fall-downing detection based on accelerometer[J]. Computer Application Research, 2013, 30(4):1109-1111.
[6] FANG-YIE LEU, CHIA-YIN KO, YI-CHEN LIN, et al. Smart Sensors Networks[M]. United Kingdom:Mara Conner, 2017:205-237.
[7] CHEN L, MA H T, LIU S, et al. Posture estimation by Bayesian Network with Belief Propagation[C]//TENCON 2013-2013 IEEE Region 10 Conference. Xi’an, China, 2013:1-4.
[8] Duan K B, Keerthi S S. Which is the best multiclass SVM method? An empirical study[M]//Multiple Classifier Systems. Springer Berlin Heidelberg, 2005:278-285.
[9] BREIMAN L. Random forest[J]. Machine learning, 2001, 45(1):5-32.
[10] SZ Erdogan, TT Bilgin, J Cho. Fall-down detection by using K-nearest neighbor algorithm on WSN data[C]//GLOBECOM Workshops. Houston, USA, 2011:2054-2058.
[11] WU G, XUE S. Portable preimpact fall-down detector with inertial sensors[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2008, 16(2):178-183.
[12] OJETOLA O, GAURA E, BRUSEY J. Data set for fall-down events and daily activities from inertial sensors[C]//ACM Multimedia Systems Conference. Oregon, USA, 2015:243-248.
[13] CHEN J, KWONG K, CHANG D, et al. Wearable sensors for reliable fall-down detection[C]//International Conference of the IEEE, NEW YORK, USA, 2006:3551-3554.
[14] LI Q, STANKOVIC J A, HANSON M A, et al. Accurate fast fall-down detection using gyroscopes and accelerometer-derived posture information[C]//Sixth International Workshop on Wearable and Implantable Body Sensor Networks. CA, USA, 2009:138-143.
[15] VAIDEHI V, GANAPATHY K, MOHAN K, et al. Video based automatic fall-down detection in indoor environment[C]//International Conference on Recent Trends in Information Technology. Chennai, INDIA, 2011:1016-1020.
[16] BOSCH-JORGE M, SÁNCHEZ-SALMERÓN A J, ÁNGEL VALERA, et al. Fall-down detection based on the gravity vector using a wide-angle camera[J]. Expert Systems with Applications, 2014, 41(17):7980-7986.
[17] 佟丽娜, 宋全军, 葛运建. 基于时序分析的人体摔倒预测方法[J]. 模式识别与人工智能, 2012, 25(2):273-279. TONG Linna, SONG Quanjun, GE Yunjian. Time series analysis based human fall prediction method[J]. Pattern recognition & artificial intelligence, 2012, 25(2):273-279.
[18] GIBSON R M, AMIRA A, CASASECA-DE-LA-HIGUERA P, et al. An efficient user-customisable multiresolution classifier fall-down detection and diagnostic system[C]//International Conference on Microelectronics. Changchun, China, 2015:228-231.
[19] LUO D, LUO H, SCHOOL I. Fall detection algorithm based on random forest[J]. Journal of computer applications, 2015, 35(11):3157-3160.
[20] 胡二雷, 冯瑞. 基于深度学习的图像检索系统[J]. 计算机系统应用, 2017, 26(3):8-19. HU Erlei, FENG Rui. Image retrieval system based on deep learning[J]. Computer systems & applications, 2017, 26(3):8-19.
[21] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8):1697-1716. JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8):1697-1716.
[22] DEJIAO NIU, RUI XUE, TAO CAI, HAI LI, EFFAH KINGSLEY. The new large-scale RNNLM system based on distributed neuron[C]//Parallel and Distributed Processing Symposium Workshops. Florida, USA, 2017:433-436.
[23] YONG Z, MENG J E, VENKATESAN R, et al. Sentiment classification using comprehensive attention recurrent models[C]//International Joint Conference on Neural Networks. Vancouver, Canada, 2016:1562-1569.
[24] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation[C]//Conference on Empirical Methods in Natural Language Processing. Doha, Qatar, 2014:1724-1734.
[25] 张舸, 张鹏远, 潘接林, 等. 基于递归神经网络的语音识别快速解码算法[J]. 电子与信息学报, 2017, 39(4):930-937. ZHANG Ge, ZHANG Pengyuan, PAN Jielin, et al. Fast decoding algorithm for automatic speech recognition based on recurrent neural networks[J]. Journal of Electronics Information Technology, 2017, 39(4):930-937.
[26] MEI H, BANSAL M, WALTER M R. Coherent dialogue with attention-based language models[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, America, 2017:3252-3258.
[27] BAI J, WU Y. SAE-RNN Deep learning for RGB-D based object recognition[C]//International Conference on Intelligent Computing. Odisha, India, 2014:235-240.
[28] FAN H, LING H. Sanet:structure-aware network for visual tracking[C]//Computer Vision and Pattern Recognition Workshops. Honolulu, USA, 2017:2217-2224.
[29] 蔡政. 面向社交网络的GIF视频情感标注与分析技术研究[D]. 福建:厦门大学, 2016:10-15. CAI Zheng. Research on the emotional annotation and analysis of GIF video for social network[D]. Fujian:Xiamen University, 2016:10-15.
[30] ZHANG H, LI J, JI Y, et al. A character-level sequence-to-sequence method for subtitle learning[C]//International Conference on Industrial Informatics. Poitiers,France, 2016:780-783.
[31] SHETTY R, LAAKSONEN J. Video captioning with recurrent networks based on frame- and video-level features and visual content classification[C]. Santiago, ICCV workshop, 2015.
[32] MALINOWSKI M, ROHRBACH M, FRITZ M. Ask your neurons:a deep learning approach to visual question answering[J]. International journal of computer vision, 2017, 125(1—3):110-135.
[33] 姜春福, 余跃庆. 基于状态延迟动态递归神经网络的机器人动态自适应跟踪辨识[J]. 自动化学报, 2003, 29(5):741-747. JIANG Chunfu, YU Yueqing. Sdidrnn based dynamical adaptive tracking identification of robot manipulators[J]. Proceedings of the CSU-EPSA, 2003, 29(5):741-747.
[34] MIKOLOV T A. Statistical language models based on neural networks[D]. Brno, Czech Republic: Brno University of Technology, 2012:27-43.

备注/Memo

收稿日期:2017-10-17。
基金项目:江苏省科技厅重点研发计划产业前瞻与共性关键技术项目(BE2015137);江苏省自然科学基金项目(BK20140570);中国博士后基金项目(2016M601737).
作者简介:牛德姣,女,1978年生,副教授,博士,主要研究方向为神经网络、新型非易失存储器。发表SCI和EI检索论文10余篇;刘亚文,女,1994年生,硕士研究生,主要研究方向为神经网络、大数据计算;蔡涛,男,1976年生,副教授,博士,CCF会员,主要研究方向为面向大数据人工智能和新型非易失存储器。发表SCI和EI检索论文30余篇。
通讯作者:牛德姣.E-mail:djniu@ujs.edu.cn.

更新日期/Last Update: 2018-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com