[1]谌贵辉,何龙,李忠兵,等.卷积神经网络的贴片电阻识别应用[J].智能系统学报,2019,14(2):263-272.[doi:10.11992/tis.201710005]
 CHEN Guihui,HE Long,LI Zhongbing,et al.Chip resistance recognition based on convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14(2):263-272.[doi:10.11992/tis.201710005]
点击复制

卷积神经网络的贴片电阻识别应用

参考文献/References:
[1] GIUNCHIGLIA F, YATSKEVICH M. Element level semantic matching. Technical Report DIT-04-035[R]. Trento, Italy:Information Engineering and Computer Science, 2004.
[2] OMACHI M, OMACHI S. Fast two-dimensional template matching with fixed aspect ratio based on polynomial approximation[C]//Proceedings of the 9th International Conference on Signal Processing. Beijing, China, 2008:757-760.
[3] JOLLIFFE I T. Principal component analysis[M]. New York, USA:Springer-Verlag, 1986.
[4] ZHANG Xingfu, REN Xiangmin. Two dimensional principal component analysis based independent component analysis for face recognition[C]//Proceedings of 2011 International Conference on Multimedia Technology. Hangzhou, China, 2011:934-936.
[5] PELLEGRINO F A, VANZELLA W, TORRE V. Edge detection revisited[J]. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 2004, 34(3):1500-1518.
[6] DUCOTTET C, FOURNEL T, BARAT C. Scale-adaptive detection and local characterization of edges based on wavelet transform[J]. Signal processing, 2004, 84(11):2115-2137.
[7] SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing[J]. International journal of computer vision, 1997, 23(1):45-78.
[8] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[9] GUO H, GELFAND S B. Classification trees with neural network feature extraction[J]. IEEE transactions on neural networks, 1992, 3(6):923-33.
[10] GOLDSZMIDT M. Bayesian network classifiers[J]. Machine learning, 2011, 29(2/3):598-605.
[11] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8):1697-1717 JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese journal of computers, 2016, 39(8):1697-1717
[12] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[13] ERHAN D, MANZAGOL P A, BENGIO Y, et al. The difficulty of training deep architectures and the effect of unsupervised pre-training[C]//Appearing in Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida, USA, 2009:153-160.
[14] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[M]//ARBIB M A. The Handbook of Brain Theory and Neural Networks. Cambridge, MA, USA:MIT Press, 1998.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Montreal, Canada, 2012:1097-1105.
[16] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2014:1-9.
[17] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[J]. arXiv:1602.07261, 2016.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016:770-778.
[19] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015:448-456.
[20] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, FL, USA, 2011:315-323.
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2017-10-11。
基金项目:四川省科技支撑计划项目(2016GZ0107);四川省教育厅重点项目(16ZA0065);南充市重点科技项目(NC17SY4001).
作者简介:谌贵辉,男,1971年生,教授,主要研究方向为MEMS集成器件及传感器、智能仪表、计算机仿真及模拟技术及图像处理及模式识别技术。;何龙,男,1991年生,硕士研究生,主要研究方向为智能控制、模式识别。;李忠兵,男,1987年生,博士,主要研究方向为图像处理、精密仪器及现代信号处理。
通讯作者:何龙.E-mail:396024902@qq.com

更新日期/Last Update: 2019-04-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com