[1]阿丽亚·巴吐尔,努尔毕亚·亚地卡尔,吾尔尼沙·买买提,等.改进SURF特征的维吾尔文复杂文档图像匹配检索[J].智能系统学报,2019,14(2):296-305.[doi:10.11992/tis.201709014]
ALIYA Batur,NURBIYA Yadikar,HORNISA Mamat,et al.Complex Uyghur document image matching and retrieval based on modified SURF feature[J].CAAI Transactions on Intelligent Systems,2019,14(2):296-305.[doi:10.11992/tis.201709014]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第2期
页码:
296-305
栏目:
学术论文—自然语言处理与理解
出版日期:
2019-03-05
- Title:
-
Complex Uyghur document image matching and retrieval based on modified SURF feature
- 作者:
-
阿丽亚·巴吐尔1, 努尔毕亚·亚地卡尔1, 吾尔尼沙·买买提1, 阿力木江·艾沙2, 库尔班·吾布力1
-
1. 新疆大学 信息科学与工程学院, 新疆 乌鲁木齐, 830046;
2. 新疆大学 网络与信息中心, 新疆 乌鲁木齐, 830046
- Author(s):
-
ALIYA Batur1, NURBIYA Yadikar1, HORNISA Mamat1, ALIMJAN Aysa2, KURBAN Ubul1
-
1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
2. Network and information center, Xinjiang University, Xinjiang University, Urumqi 830046, China
-
- 关键词:
-
复杂文档; 维吾尔文档图像; 文档图像分割; 特征提取; SURF特征; FLANN双向匹配; KD-Tree+BBF匹配; 图像检索
- Keywords:
-
complex document image; Uyghur document image; document image segmentation; feature extraction; SURF feature; FALNN bidirectional matching; KD-Tree+BBF matching; image retrieval
- 分类号:
-
TP391.1
- DOI:
-
10.11992/tis.201709014
- 摘要:
-
针对图像局部特征的词袋模型(Bag-of-Word,BOW)检索研究中聚类中心的不确定性和计算复杂性问题,提出一种由不同种类的距离进行相似程度测量的检索和由匹配点数来检索的方法。这种方法首先需要改进文档图像的SURF特征,有效降低特征提取复杂度;其次,对FAST+SURF特征实现FLANN双向匹配与KD-Tree+BBF匹配,在不同变换条件下验证特征鲁棒性;最后,基于这两种检索方法对已收集整理好的各类维吾尔文文档图像数据库进行检索。实验结果表明:基于距离的相似性度量复杂度次于基于匹配数目的检索,而且两种检索策略都能满足快速、精确查找需求。
- Abstract:
-
This study is aimed at the uncertainty and computational complexity of the clustering center in local image features retrieval based on the bag-of-words (BOW) model. A method to retrieve the measure of similarity degree from different kinds of distance and another method that requires using the matching point number as the basis of retrieval are proposed in this paper. In this method, the SURF feature is first modified to effectively reduce feature extraction complexity, and then FLANN (fast library for approximate nearest neighbors) bidirectional matching and KD-Tree + BBF matching are implemented for FAST + SURF features. Feature robustness is verified under different transformation conditions. Finally, all kinds of Uyghur document images that have been classified and sorted based on these two retrieval methods are retrieved. The results of the retrieval experiments indicate that the similarity degree measure retrieval based on distance is inferior to the retrieval based on matching number, and both of these two retrieval strategies can meet the requirements of fast and accurate searching.
备注/Memo
收稿日期:2017-09-17。
基金项目:国家自然科学基金项目(61563052,61163028,61363064);新疆大学博士科研启动基金项目(BS150262),新疆维吾尔自治区高校科研计划创新团队项目(XJEDU2017T002).
作者简介:阿丽亚·巴吐尔,女,1990年生,硕士研究生,主要研究方向为模式识别、图像检索。;努尔毕亚·亚地卡尔,女,1970年生,讲师,中国人工智能学会会员,主要研究方向为图像处理、计算机视觉。;吾尔尼沙·买买提,女,1976年生,讲师,中国人工智能学会会员,主要研究方向为信号与信息处理、模式识别。
通讯作者:库尔班·吾布力.E-mail:urbanu@xju.edu.cn
更新日期/Last Update:
2019-04-25