[1]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857-864.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12(6):857-864.[doi:10.11992/tis.201706035]
点击复制

基于医学征象和卷积神经网络的肺结节CT图像哈希检索

参考文献/References:
[1] REBECCA L, KIMBERLY D M, STACEY A F, et al. Cancer statistics[J]. CA: a cancer journal for clinicians, 2017, 67 (3): 177.
[2] ZHAO Y, BOCK G H D, VLIEGENTHART R, et al. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume[J]. European radiology, 2012, 22(10): 2076.
[3] CHEN S, NI D, QIN J, et al. Bridging computational features toward multiple semantic features with multi-task regression: a study of CT pulmonary nodules[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. Springer International Publishing, 2016: 53-60.
[4] VADLAMUDI L N, VADDELLA R P V, DEVARA V. Robust image hashing technique for content authentication based on DWT[C]//Proceedings of International Conference on Computer Vision and Image Processing. Singapore: Springer, 2017: 189-191.
[5] GIONIS A, ⅡNDYK P, MOTWANI R. Similarity search in high dimensions via Hashing[C]//International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc. 2000: 518-529.
[6] WEISS Y, TORRALBA A, FERGUS R. Spectral Hashing [J]. Proc nips, 2008, 282(3): 1753-1760.
[7] GONG Y, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(12): 2916-29.
[8] LIU W, WANG J, JI R, et al. Supervised hashing with kernels[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA, 2012: 2074-2081.
[9] JING M, ZHANG S, HUANG J, et al. Joint kernel-based supervised hashing for scalable histopathological image analysis[C]//Medical Image Computing and Computer-Assisted Intervention 2015. Springer International Publishing, 2015, 1: 558-560.
[10] LIU J, ZHANG S, LIU W, et al. Scalable mammogram retrieval using composite anchor graph hashing with iterative quantization[J]. IEEE transactions on circuits and systems for video technology, 2016(99): 1-1.
[11] LIU H M, WANG R P, SHAN S, et al. Deep supervised hashing for fast image retrieval[C]//Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016: 2064-2072.
[12] YANG H F, LIN K, CHEN C S. Supervised learning of semantics-preserving hash via deep convolutional neural networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2015(99): 1-1.
[13] ARMATO S, MCLENNAN G, MCNITTt-GRAY M, et al. WEB201B02: the lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed public database of CT scans for lung nodule analysis[J], Medical physics, 2010, 37(6): 3416-3417.
[14] YANG X, CHENG K T. Local difference binary for ultrafast and distinctive feature description[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(1): 188-94.
[15] TARANDO S R, FETITA C. Increasing CAD system efficacy for lung texture analysis using a convolutional network[C]//Proceedings of SPIE 9785, Medical Imaging. San Diego, USA, 2016: 97850Q.
[16] BABENKO, SLESAREV A, CHIGORIN A, et al. Neural codes for image retrieval[M]. Springer International Publishing, 2014: 584-599.
[17] FU H, KONG X, WANG Z. Binary code reranking method with weighted hamming distance[J]. Multimedia tools and applications, 2016, 75(3): 1391-1408.
[18] 王超,王浩,王伟,等. 基于优化ROI的医学图像分割与压缩方法研究[J]. 重庆邮电大学学报: 自然科学版, 2015, 27(2): 279-284.
WANG Chao, WANG Hao, WANG Wei, et al. Study of optimized ROI based medical image segmentation and compression method[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2015, 27(2): 279-284.
[19] LIAO X, ZHAO J, CHENG J, et al. A segmentation method for lung parenchyma image sequences based on superpixels and a self-generating neural forest[J]. Plos one, 2016, 11(8): e0160556.

备注/Memo

收稿日期:2017-06-13;改回日期:。
基金项目:国家自然科学基金项目(61373100);虚拟现实技术与系统国家重点实验室开放基金项目(BUAA-VR-17KF-14,BUAA-VR-17KF-15);山西省回国留学人员科研项目(2016-038).
作者简介:杨晓兰,女,1991年生,硕士研究生,主要研究方向为图像处理与图像检索;强彦,男,1969年生,教授,博士生导师,博士,主要研究方向为图像处理、云计算、大数据。主持参与国家自然科学基金、虚拟现实技术与系统国家重点实验室开放基金等项目;赵涓涓,女,1975年生,教授,博士生导师,博士,主要研究方向为图像处理、模式识别、深度学习。主持参与国家自然科学基金、山西省回国留学人员科研资助项目等项目。
通讯作者:杨晓兰.E-mail:1141183481@qq.com.

更新日期/Last Update: 2018-01-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com