[1]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(5):616-623.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(5):616-623.[doi:10.11992/tis.201706025]
点击复制

人脸识别背后的数据清理问题研究

参考文献/References:
[1] SUN Y, WANG X, TANG X. Deep learning face representation by joint identification-verification[J]. Advances in neural information processing systems, 2014, 27:1988-1996.
[2] SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10,000 classes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2014:1891-1898.
[3] 王晓刚,孙袆,汤晓鸥. 从统一子空间分析到联合深度学习:人脸识别的十年历程[J]. 中国计算机学会通讯, 2015, 11(4):8-15.WANG Xiaogang, SUN Hui, TANG Xiaoou. From unified subspace analysis to joint depth learning:ten years of face recognition[J]. China computer society newsletter, 2015, 11(4):8-15.
[4] PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition[C]//British Machine Vision. London,Britain, 2015:411-4112.
[5] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:A unified embedding for face recognition and clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:815-823.
[6] DING C, TAO D. A comprehensive survey on pose-invariant face recognition[J]. Acm transactions on intelligent systems and technology, 2015, 7(3):37.
[7] SUN Y, LIANG D, WANG X, et al. DeepID3:face recognition with very deep neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:963-971.
[8] SUN Y, WANG X, TANG X. Hybrid deep learning for face verification[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(10):1997-2009.
[9] TAIGMAN Y, YANG M, RANZATO M, et al. Deepface:closing the gap to human-level performance in face verification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbia,American,2014:1701-1708.
[10] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//ECCV Conference on Computer Vision.Amsterdam,Holand, 2016:499-515.
[11] HUANG G B,MATTAR M, BERG T, et al. Labeled faces in the wild:a database for studying face recognition in unconstrained environments[J].Month, 2007.
[12] SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10,000 classes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2014:1891-1898.
[13] LIU J, DENG Y, BAI T, et al. Targeting ultimate accuracy:face recognition via deep embedding[C]//European Conference on Computer Vision.Amsterdam,Netherlands, 2016:499-515.
[14] TAIGMAN Y, YANG M, RANZATO M, et al. Web-scale training for face identification[C]//Computer Vision and Pattern Recognition.Columbus, USA, 2014:2746-2754.
[15] SUN Y, WANG X, TANG X. Deeply learned face representations are sparse, selective, and robust[C]//Computer Vision and Pattern Recognition. Boston, USA, 2015:2892-2900.
[16] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet:a unified embedding for face recognition and clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:815-823.
[17] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision. Amsterdam, Netherlands,2016:499-515.
[18] SEITZ S M, MILLER D, et al.The megaface benchmark:1 million faces for recognition at scale[C]//Computer Vision and Pattern Recognition. Las Vegas,USA,2016:4873-4882.
[19] BORJI A, IZADI S, ITTI L. iLab-20M:a large-scale controlled object dataset to investigate deep learning[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2221-2230.
[20] KEMELMACHERSHLIZERMAN I, SEITZ S M, MILLER D, et al. The megaface benchmark:1 million faces for recognition at scale[C]//Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:4873-4882.
[21] GUO Y, ZHANG L, HU Y, et al. MS-Celeb-1M:challenge of recognizing one million celebrities in the real world[C]//Electronic imaging. San Francisco,USA,2016:1-6.
[22] GUO Y, ZHANG L, HU Y, et al. MS-celeb-1M:a dataset and benchmark for large-scale face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:113-124.
[23] BANSAL A, NANDURI A, CASTILLO C, et al. UMDFaces:an annotated face dataset for training deep networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:976-984.
[24] WOLF L, HASSENER T, MAOZ I. Face recognition in unconstrained videos with matched background similarity[C]//Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011:529-534.
[25] GUO Y, ZHANG L. One-shot face recognition by promoting underrepresented classes[J]. Computer vision and pattern recognition, arxiv:1707.05574,2017.
[26] NECH A, Kemelmachershlizerman I. Level playing field for million scale face recognition[J]. Computer vision and pattern recognition, arxiv:1705.00393,2017.
[27] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10):1499-1503.
[28] HUANG G.B, LEARNED-MILLER E. Labeled faces in the wild:updates and new reporting procedures[R]. Technical report UM-CS-2014-003.
[29] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[J]. Eprint arxiv, 2014:675-678.
[30] LIU F, ZENG D, ZHAO Q, et al. Joint face alignment and 3D face reconstruction[C]//European Conference on Computer Vision. Amsterdam,Netherlands, 2016:545-560.
相似文献/References:
[1]刘万军,孟仁杰,曲海成,等.基于增强AlexNet的音乐流派识别研究[J].智能系统学报,2020,15(4):750.[doi:10.11992/tis.201909032]
 LIU Wanjun,MENG Renjie,QU Haicheng,et al.Music genre recognition research based on enhanced AlexNet[J].CAAI Transactions on Intelligent Systems,2020,15():750.[doi:10.11992/tis.201909032]

备注/Memo

收稿日期:2017-06-08。
基金项目:国家自然科学基金项目(61202191);计算智能重庆市重点实验室开放基金项目(CQ-LCI-2013-06);国家重点研发计划项目(2016YFC0802209).
作者简介:夏洋洋,男,1990年生,硕士研究生,主要研究方向为深度学习、图像处理、人脸识别;龚勋,男,1980年生,副教授,博士,主要研究方向为图像处理及模式识别、三维人脸建模、人脸图像分析及识别。获国家发明专利2项,发表学术论文30余篇,出版专著1部;洪西进,男,1957年生,特聘教授,博士,主要研究方向为信息安全、生物辨识、云计算与大数据、智能图像处理。发明专利13项,发表SCI期刊学术论文80余篇,国际学术会议论文110余篇。
通讯作者:龚勋.E-mail:xgong@swjtu.edu.cn

更新日期/Last Update: 2017-10-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com