[1]柳缔西子,范勤勤,胡志华.基于混沌搜索和权重学习的教与学优化算法及其应用[J].智能系统学报,2018,13(5):818-828.[doi:10.11992/tis.201705017]
LIU Dixizi,FAN Qinqin,HU Zhihua.Teaching-learning-based optimization algorithm based on chaotic search and weighted learning and its application[J].CAAI Transactions on Intelligent Systems,2018,13(5):818-828.[doi:10.11992/tis.201705017]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第5期
页码:
818-828
栏目:
学术论文—机器学习
出版日期:
2018-09-05
- Title:
-
Teaching-learning-based optimization algorithm based on chaotic search and weighted learning and its application
- 作者:
-
柳缔西子1, 范勤勤1,2, 胡志华1
-
1. 上海海事大学 物流研究中心, 上海 201306;
2. 华东理工大学 化工过程先进控制和优化技术教育部重点实验室, 上海 200237
- Author(s):
-
LIU Dixizi1, FAN Qinqin1,2, HU Zhihua1
-
1. Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;
2. MOE Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai 200237, China
-
- 关键词:
-
教与学优化; 权重学习; 启发式算法; 混沌搜索; 全局优化; 进化计算; 非合作博弈; 纳什均衡
- Keywords:
-
teaching-learning-based optimization; weight learning; heuristic algorithm; chaotic search; global optimization; evolutionary computation; non-cooperative game; Nash equilibrium
- 分类号:
-
TP301.6
- DOI:
-
10.11992/tis.201705017
- 摘要:
-
针对教与学优化算法容易陷入早熟收敛的问题,本研究提出了一种基于混沌搜索和权重学习的教与学优化(teaching-learning-based optimization algorithm based on chaotic search and weighted learning,TLBO-CSWL)算法。在TLBO-CSWL算法的教学阶段,不仅利用权重学习得到的个体来指引种群的进化,而且还使用正态分布随机数来替代原有的均匀随机数。另外,TLBO-CSWL还使用Logistics混沌搜索策略来提高其全局搜索能力。仿真结果表明,TLBO-CSWL的整体优化性能要好于其他所比较的算法。最后,将TLBO-CSWL用于求解非合作博弈纳什均衡问题,获得满意的结果。
- Abstract:
-
To avoid premature convergence, a teaching-learning-based optimization algorithm based on chaotic search and weighted learning (TLBO-CSWL) is introduced in this study. In the teaching phase, TLBO-CSWL does not only use the individuals obtained by weight learning to guide the population evolution, it also utilizes a normal random number to replace the original uniform random number. In addition, TLBO-CSWL uses a logistics chaotic search strategy to improve its global search ability. Simulation results showed that TLBO-CSWL outperformed other compared algorithms in terms of overall performance. Finally, the proposed algorithm was employed to solve two Nash equilibrium problems of non-cooperative game, and satisfactory results were obtained.
备注/Memo
收稿日期:2017-05-15。
基金项目:国家自然科学基金项目(611603244);中央高校基本科研业务费重点科研基地创新基金项目(222201717006);上海海事大学研究生创新基金资助项目(2017YCX020).
作者简介:柳缔西子,女,1995年生,硕士研究生,主要研究方向为教与学优化算法、物流与供应链管理;范勤勤,男,1986年生,讲师,主要研究方向为多目标优化、机器学习、进化计算。发表学术论文20余篇;胡志华,男,1977年生,教授,博士生导师,主要研究方向为物流与港航运作优化、大数据系统与管理、计算智能与计算实验。发表学术论文百余篇,被SCI、EI检索30余篇。
通讯作者:范勤勤.E-mail:forever123fan@163.com.
更新日期/Last Update:
2018-10-25