[1]傅蔚阳,刘以安,薛松.基于改进KH算法优化ELM的目标威胁估计[J].智能系统学报,2018,13(5):693-699.[doi:10.11992/tis.201704007]
 FU Weiyang,LIU Yian,XUE Song.Target threat assessment using improved Krill Herd optimization and extreme learning machine[J].CAAI Transactions on Intelligent Systems,2018,13(5):693-699.[doi:10.11992/tis.201704007]
点击复制

基于改进KH算法优化ELM的目标威胁估计

参考文献/References:
[1] 姚磊, 王红明, 郑锋, 等. 空中目标威胁估计的模糊聚类方法研究[J]. 武汉理工大学学报:交通科学与工程版, 2010, 34(6):1159-1161, 1166 YAO Lei, WANG Hongming, ZHENG Feng, et al. Study fuzzy clustering method of air target threat assessment[J]. Journal of Wuhan university of technology:transportation science & engineering, 2010, 34(6):1159-1161, 1166
[2] 王改革, 郭立红, 段红, 等. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版, 2013, 43(4):1064-1069 WANG Gaige, GUO Lihong, DUAN Hong, et al. Target threat assessment using glowworm swarm optimization and BP neural network[J]. Journal of Jilin university:engineering and technology edition, 2013, 43(4):1064-1069
[3] GANDOMI A H, ALAVI A H. Krill herd:a new bio-inspired optimization algorithm[J]. Communications in nonlinear science and numerical simulation, 2012, 17(12):4831-4845.
[4] 黄璇, 郭立红, 李姜, 等. 磷虾群算法优化支持向量机的威胁估计[J]. 光学精密工程, 2016, 24(6):1448-1455 HUANG Xuan, GUO Lihong, LI Jiang, et al. Threat assessment of support vector machine optimized by Krill Herd algorithm[J]. Optics and precision engineering, 2016, 24(6):1448-1455
[5] HUANG Guangbin, CHEN Lei. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(16/18):3460-3468.
[6] 林梅金, 罗飞, 苏彩红, 等. 一种新的混合智能极限学习机[J]. 控制与决策, 2015, 30(6):1078-1084 LIN Meijin, LUO Fei, SU Caihong, et al. An improved hybrid intelligent extreme learning machine[J]. Control and decision, 2015, 30(6):1078-1084
[7] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary, 2004:985-990.
[8] 杜长海. 基于磷虾群算法的SVR参数选取方法及其应用[J]. 自动化技术与应用, 2016, 35(5):10-14, 19 DU Changhai. Parameters selection method for support vector regression based on Krill Herd algorithm and its application[J]. Techniques of automation and applications, 2016, 35(5):10-14, 19
[9] WANG Gaige, GANDOMI A H, ALAVI A H. Stud krill herd algorithm[J]. Neurocomputing, 2014, 128:363-370.
[10] MUKHERJEE A, MUKHERJEE V. Solution of optimal power flow using chaotic krill herd algorithm[J]. Chaos, solitons and fractals, 2015, 78:10-21.
[11] BOLAJI A L, AL-BETAR M A, AWADALLAH M A, et al. A comprehensive review:Krill Herd algorithm (KH) and its applications[J]. Applied soft computing, 2016, 49:437-446.
[12] LI Junpeng, TANG Yinggan, HUA Changchun, et al. An improved krill herd algorithm:Krill herd with linear decreasing step[J]. Applied mathematics and computation, 2014, 234:356-367.
[13] 康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学, 2015, 42(10):226-231 KANG Lanlan, DONG Wenyong, TIAN Jiangsen. Opposition-based particle swarm optimization with adaptive Cauchy mutation[J]. Computer science, 2015, 42(10):226-231
[14] TIZHOOSH H R. Opposition-Based reinforcement learning[J]. Journal of advanced computational intelligence and intelligent informatics, 2006, 10(4):578-585.
[15] 武传玉, 刘付显. 基于模糊评判的新防空威胁评估模型[J]. 系统工程与电子技术, 2004, 26(8):1069-1071 WU Chuanyu, LIU Fuxian. New model of target threat assessment for air defense operation based on fuzzy theory[J]. Systems engineering and electronics, 2004, 26(8):1069-1071
[16] 刘海波, 王和平, 沈立顶. 基于SAPSO优化灰色神经网络的空中目标威胁估计[J]. 西北工业大学学报, 2016, 34(1):25-32 LIU Haibo, WANG Heping, SHEN Liding. Target threat assessment using SAPSO and grey neural network[J]. Journal of northwestern polytechnical university, 2016, 34(1):25-32
[17] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics-Part B:cybernetics:a publication of the IEEE systems, man and cybernetics society, 2012, 42(2):513-529.
[18] HUANG Guangbin, DING Xiaojian, ZHOU Hongming. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1/2/3):155-163.
[19] YAO Yueting, ZHAO Jianjun, WANG Yi, et al. MADM of threat assessment with attempt of target[M]//KIM H. Advances in Technology and Management. Berlin, Heidelberg:Springer, 2012:171-179.
[20] KOWALSKI P A, ?UKASIK S. Training neural networks with Krill Herd algorithm[J]. Neural processing letters, 2016, 44(1):5-17.

备注/Memo

收稿日期:2017-04-12。
基金项目:江苏省自然科学基金项目(BK20160162).
作者简介:傅蔚阳,男,1993年生,硕士研究生,主要研究方向为雷达对抗、人工智能;刘以安,男,1963年生,教授,博士,主要研究方向为数据融合与数据挖掘、雷达对抗、模式识别与智能系统。主持或参与教育部、国防科工委、江苏省教育厅等省部级项目5项。发表学术论文60余篇;薛松,男,1987年生,工程师,主要研究方向为信号与信息处理、内场仿真系统设计。发表学术论文2篇。
通讯作者:傅蔚阳.E-mail:18806186287@163.com.

更新日期/Last Update: 2018-10-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com