[1]温晓红,刘华平,阎高伟,等.基于超限学习机的非线性典型相关分析及应用[J].智能系统学报,2018,13(4):633-639.[doi:10.11992/tis.201703034]
 WEN Xiaohong,LIU Huaping,YAN Gaowei,et al.Nonlinear canonical correlation analysis and application based on extreme learning machine[J].CAAI Transactions on Intelligent Systems,2018,13(4):633-639.[doi:10.11992/tis.201703034]
点击复制

基于超限学习机的非线性典型相关分析及应用

参考文献/References:
[1] HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28(3/4):321-377.
[2] SARGIN M E, YEMEZ Y, ERZIN E, et al. Audiovisual synchronization and fusion using canonical correlation analysis[J]. IEEE transactions on multimedia, 2007, 9(7):1396-1403.
[3] 侯书东, 孙权森. 稀疏保持典型相关分析及在特征融合中的应用[J]. 自动化学报, 2012, 38(4):659-665. HOU Shudong, SUN Quansen. Sparsity preserving canonical correlation analysis with application in feature fusion[J]. Acta automatica sinica, 2012, 38(4):659-665.
[4] YUAN Yunhao, SUN Quansen, GE Hongwei. Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition[J]. Pattern recognition, 2014, 47(3):1411-1424.
[5] XING Xianglei, WANG Kejun, YAN Tao, et al. Complete canonical correlation analysis with application to multi-view gait recognition[J]. Pattern recognition, 2016, 50:107-117.
[6] RASIWASIA N, PEREIRA J C, COVIELLO E, et al. A new approach to cross-modal multimedia retrieval[C]//Proceedings of the 18th ACM International Conference on Multimedia. New York, NY, USA, 2010:251-260.
[7] HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J. Canonical correlation analysis:an overview with application to learning methods[J]. Neural computation, 2004, 16(12):2639-2664.
[8] ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia, USA, 2013:Ⅲ-1247-Ⅲ-1255.
[9] WANG Weiran, ARORA R, LIVESCU K, et al. On deep multi-view representation learning[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015:1083-1092.
[10] HUANG Guang, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[11] CAMBRIA E, HUANG Guangbin, KASUN L L C, et al. Extreme learning machines:trends and controversies[J]. IEEE intelligent systems, 2013, 28(6):30-59. (请核对标题信息)
[12] YU Wenchao, ZHUANG Fuzhen, HE Qing, et al. Learning deep representations via extreme learning machines[J]. Neurocomputing, 2015, 149:308-315.
[13] SUN Kai, ZHANG Jiangshe, ZHANG Chunxia, et al. Generalized extreme learning machine autoencoder and a new deep neural network[J]. Neurocomputing, 2017, 230:374-381.
[14] UZAIR M, SHAFAIT F, GHANEM B, et al. Representation learning with deep extreme learning machines for efficient image set classification[M]//MACINTYRE J. Neural Computing and Applications. London:Springer, 2015:1-13.
[15] WEI Jie, LIU Huaping, YAN Gaowei, et al. Robotic grasping recognition using multi-modal deep extreme learning machine[J]. Multidimensional systems and signal processing, 2017, 28(3):817-833.
[16] WANG Weiran, ARORA R, LIVESCU K, et al. Unsupervised learning of acoustic features via deep canonical correlation analysis[C]//Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Brisbane, Australia, 2015:4590-4594.
[17] LENZ I, LEE H, SAXENA A. Deep learning for detecting robotic grasps[J]. The international journal of robotics research, 2015, 34(4/5):705-724.
[18] JIANG Yun, MOSESON S, SAXENA A. Efficient grasping from RGBD images:learning using a new rectangle representation[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, 2011:3304-3311.
[19] 韩峥, 刘华平, 黄文炳, 等. 基于Kinect的机械臂目标抓取[J]. 智能系统学报, 2013, 8(2):149-155. HAN Zheng, LIU Huaping, HUANG Wenbing, et al. Kinect-based object grasping by manipulator[J]. CAAI transactions on intelligent systems, 2013, 8(2):149-155.
[20] 温有福, 贾彩燕, 陈智能. 一种多模态融合的网络视频相关性度量方法[J]. 智能系统学报, 2016, 11(3):359-365. WEN Youfu, JIA Caiyan, CHEN Zhineng. A multi-modal fusion approach for measuring web video relatedness[J]. CAAI transactions on intelligent systems, 2016, 11(3):359-365.
[21] 姬晓飞, 秦宁丽, 刘洋. 多特征的光学遥感图像多目标识别算法[J]. 智能系统学报, 2016, 11(5):655-662. JI Xiaofei, QIN Ningli, LIU Yang. Research on multi-feature based multi-target recognition algorithm for optical remote sensing image[J]. CAAI transactions on intelligent systems, 2016, 11(5):655-662.
[22] CAMPLANI M, PAIEMENT A, MIRMEHDI M, et al. Multiple human tracking in RGB-D data:a survey[J]. arXiv:1606.04450, 2016.
相似文献/References:
[1]倪怀发,沈肖波,孙权森.基于低秩分解的鲁棒典型相关分析[J].智能系统学报,2017,12(4):491.[doi:10.11992/tis.201607024]
 NI Huaifa,SHEN Xiaobo,SUN Quansen.Robust canonical correlation analysis based onlow rank decomposition[J].CAAI Transactions on Intelligent Systems,2017,12():491.[doi:10.11992/tis.201607024]
[2]刘卓锟,刘华平,黄文美,等.视听觉跨模态表面材质检索[J].智能系统学报,2019,14(3):423.[doi:10.11992/tis.201804030]
 LIU Zhuokun,LIU Huaping,HUANG Wenmei,et al.Audiovisual cross-modal retrieval for surface material[J].CAAI Transactions on Intelligent Systems,2019,14():423.[doi:10.11992/tis.201804030]
[3]吕卓纹,王一斌,邢向磊,等.加权CCA多信息融合的步态表征方法[J].智能系统学报,2019,14(3):449.[doi:10.11992/tis.201808012]
 LYU Zhuowen,WANG Yibin,XING Xianglei,et al.A gait representation method based on weighted CCA for multi-information fusion[J].CAAI Transactions on Intelligent Systems,2019,14():449.[doi:10.11992/tis.201808012]

备注/Memo

收稿日期:2017-03-24。
基金项目:国家自然科学基金重点项目(U1613212);国家高技术研究发展计划项目(2015AA042306).
作者简介:温晓红,女,1993年生,硕士研究生,主要研究方向为智能控制、模式识别、多模态融合;刘华平,男,1976年生,副教授,博士生导师,主要研究方向为机器人感知、学习与控制,多模态信息融合;阎高伟,男,1970年生,教授,主要研究方向为复杂工业控制系统、智能控制理论及其应用、机器学习与软测量建模。
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn.

更新日期/Last Update: 2018-08-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com