[1]蒋亦樟,朱丽,刘丽,等.多视角模糊双加权可能性聚类算法[J].智能系统学报,2017,12(6):806-815.[doi:10.11992/tis.201703031]
 JIANG Yizhang,ZHU Li,LIU Li,et al.Multi-view fuzzy double-weighting possibility clustering algorithm[J].CAAI Transactions on Intelligent Systems,2017,12(6):806-815.[doi:10.11992/tis.201703031]
点击复制

多视角模糊双加权可能性聚类算法

参考文献/References:
[1] JIANG Y Z, DENG Z H, CHUNG F L, et al. Realizing two-view TSK fuzzy classification system by using collaborative learning[J]. IEEE transactions on systems, man, and cybernetics: systems, 2017, 47(1): 145-160.
[2] YAMANISHI Y, VERT J P, KANEHISA M. Protein network inference from multiple genomic data: a supervised approach[J]. Bioinformatics, 2004, 20(1): 363-370.
[3] PEDRYCZ W. Collaborative fuzzy clustering[J]. Pattern recognition letter, 2002, 23(14): 1675-1686.
[4] CLEUZIOU G, EXBRAYAT M, MARTIN L, et al. CoFKM: a centralized method for multiple-view clustering [C]//Proc of the 9th IEEE International Conference on Data Mining (ICDM 2009). Miami, USA, 2009: 752-757.
[5] TZORTZIS G F, LIKEAS A C. Kernel-based weighted multi-view clustering[C]//IEEE 12th International Conference on Data Mining. Brussels, Belgium, 2012: 675-684.
[6] DENG Z H, JIANG Y Z, ISHIBUCHI H, et al. Enhanced knowledge-leverage-based tsk fuzzy system modeling for inductive transfer learning[J]. ACM transactions on intelligent systems and technology, 2016, 8(1): 1-21.
[7] QIAN P J, JIANG Y Z, DENG Z H, et al. Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering[J]. IEEE transaction on cybernetics, 2016, 46(1): 181-193.
[8] DENG Z H, JIANG Y Z, CHUNG F L, et al. Transfer prototype-based fuzzy clustering[J]. IEEE transactions on fuzzy systems, 2016, 24(5): 1210-1232.
[9] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[10] JIANG Y Z, CHUNG F L, ISHIBUCHI H, et al. Multitask TSK fuzzy system modeling by mining intertask common hidden structure[J]. IEEE transactions on cybernetics, 2015, 45(3): 548-561.
[11] CARUANA R. Multitask learning[J]. Machine learning, 1997, 28(1): 41-75.
[12] DENG Z H, CHOI K S, JIANG Y Z, et al. A survey on soft subspace clustering[J]. Information sciences, 2016, 348: 84-106
[13] HALL LO, GOLDGOF DB. Convergence of the single-pass and online fuzzy C-means algorithms[J]. IEEE transactions on fuzzy systems, 2011, 19(4): 792-794.
[14] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York, USA: Plenum Press, 1981: 65-79.
[15] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
[16] 曾令伟, 伍振兴, 杜文才.基于改进自监督学习群体智能(ISLCI)的高性能聚类算法[J].重庆邮电大学学报: 自然科学版, 2016, 28(1): 131-137.
ZENG Lingwei, WU Zhengxin, DU Wencai. Improved selfsupervised learning collection intelligence based high performance data clustering aproach[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2016, 28(1): 131-137.
[17] 程旸, 王士同.基于局部保留投影的多可选聚类发掘算法[J]. 智能系统学报, 2016, 11(5): 600-607.
CHENG Yang, WANG Shitong. A multiple alternative clusterings mining algorithm using locality preserving projections[J]. CAAI transactions on intelligent systems, 2016, 11(5): 600-607.
[18] 杭文龙, 蒋亦樟, 刘解放, 等.迁移近邻传播聚类算法[J]. 软件学报, 2016, 27(11): 2796-2813.
HANG Wenlong, JIANG Yizhang, LIU Jiefang, et al. Transfer affinity propagation clustering algorithm[J]. Journal of software, 2016, 27(11): 2796-2813.
[19] 邓赵红, 王士同, 吴锡生, 等. 鲁棒的极大熵聚类算法RMEC及其例外点标识[J]. 中国工程科学, 2004, 4(9): 38-45.
DENG Zhaohong, WANG Shitong, WU Xisheng, et al. Robust maximum entropy clustering algorithm rmec and its outlier labeling[J]. Engineering science, 2004, 6(9): 38-45.
[20] KARAYIANNIS N B. MECA: maximum entropy clustering algorithm[C]//Proc of the 3rd IEEE Conf. on Fuzzy Systems. Orlando: IEEE Press, 1994: 630-635.
[21] KRISHNAPURAM R, KELLER J. A possibilistic approach to clustering[J]. IEEE transactions on fuzzy systems, 1993, 1(2): 98-110.
[22] KRISHNAPURAM R, KELLER J M. The possiblistic means algorithms: Insights and recommendation[J]. IEEE transactions on fuzzy systems, 1996, 4(3): 385-393.
[23] TRYGVE R, BRODATZ T. Texture classification [EB/OL]. [2007-08-01]. http://www.ux.uis.no/tranden/brodatz.html.
[24] GU Q Q, ZHOU J. Learning the shared subspace for multi-task clustering and transductive transfer classification [C]//Proc Int Conf Data Mining (ICDM). Miami, USA, 2009: 59-168.

备注/Memo

收稿日期:2017-03-23;改回日期:。
基金项目:国家自然科学基金项目(61300151,61702225);江苏省自然科学基金项目(BK20160187);中央高校基本科研业务费基金项目(JUSRP11737).
作者简介:蒋亦樟,男,1988年生,讲师,博士,主要研究方向为人工智能、模式识别、模糊系统。发表学术论文40余篇,其中被SCI、EI检索20余篇;朱丽,女,1996年生,硕士研究生,主要研究方向为人工智能、模式识别、模糊系统;刘丽,女,1987年生,讲师,主要研究方向为人工智能、模式识别、模糊系统;王士同,男,1964年生,教授,博士生导师,主要研究方向为人工智能、模式识别和生物信息。发表学术论文百余篇,其中被SCI、EI检索50余篇。
通讯作者:蒋亦樟.E-mail:241519405@qq.com.

更新日期/Last Update: 2018-01-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com