[1]尤波,李忠杰,黄玲.基于改进型BP神经网络的手部动作识别[J].智能系统学报,2018,13(5):848-854.[doi:10.11992/tis.201703018]
YOU Bo,LI Zhongjie,HUANG Ling.Hand-motion recognition based on improved BP neural network[J].CAAI Transactions on Intelligent Systems,2018,13(5):848-854.[doi:10.11992/tis.201703018]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第5期
页码:
848-854
栏目:
学术论文—机器感知与模式识别
出版日期:
2018-09-05
- Title:
-
Hand-motion recognition based on improved BP neural network
- 作者:
-
尤波, 李忠杰, 黄玲
-
哈尔滨理工大学 自动化学院, 黑龙江 哈尔滨 150080
- Author(s):
-
YOU Bo, LI Zhongjie, HUANG Ling
-
School of Automation, Harbin University of Science and Technology, Harbin 150080, China
-
- 关键词:
-
BP神经网络; sEMG信号; 交叉熵; 手部动作识别; 特征提取; 正则化; 机器学习; 模式识别
- Keywords:
-
BP neural network; sEMG signal; cross entropy; hand-motion recognition; feature extraction; regularization; machine learning; pattern recognition
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201703018
- 摘要:
-
对手部动作进行模式识别,首先将采集到的肌电信号进行降噪处理,选择时域分析法中的方差算法对采集信号进行特征提取。将特征信号进行归一化处理,实验发现普通BP神经网络分类器出现学习速率慢,泛化能力较差,不同动作识别准确率差别较大等问题。针对以上问题,提出了一种改进型BP神经网络,将神经网络输入数据进行人工升维处理,并对网络学习速率慢的原因进行理论推导,然后引入交叉熵代价函数并对其进行正则化处理,以提高网络的泛化能力以及网络的识别准确率。实验结果表明,改进型BP神经网络的学习速率、泛化能力以及动作分类的准确率均优于普通网络,识别准确率平均为94.34%。
- Abstract:
-
To achieve accurate pattern recognition of hand motions, in this study, we first denoised collected electromyogram (EMG) signals, and then used a variance algorithm in the time domain to extract features from the collected signals. After normalizing the characteristic signal, in the experiment, we found that the general BP neural network classifier has a slow learning rate, poor generalization ability, and large differences in its accuracy of recognizing diverse motions. To address the above problems, we propose an improved BP neural network that processes its input data by artificially increasing the dimensions. It then theoretically determines the reason for the slow network learning rate, and introduces a cross-entropy cost function to regularize it, thereby improving the network’s generalization ability and increasing its reaction speed. Experimental results show that the improved BP neural network has a better learning speed, generalization ability, and accuracy in hand motion classification than the ordinary neural network, with an average recognition accuracy of 94.34%.
备注/Memo
收稿日期:2017-03-13。
基金项目:国家“863”计划重大项目(2009AA043803).
作者简介:尤波,男,1962年生,教授,博士生导师,中国自动化学会机器人专业委员会委员,中国宇航学会智能机器人专业委员会委员,主要研究方向为智能机器人技术、模式识别、生产过程自动化。主持多项科研项目,并获得省科技进步二等奖3项和省科技进步三等奖1项。发表学术论文180余篇, 其中SCI收录20余篇,EI收录100余篇,获发明专利10余项;李忠杰,男,1991年生,硕士研究生,主要研究方向为图像处理、深度学习。发表学术论文2篇,EI收录1篇;黄玲,女,1975年生,教授,主要研究方向为T-S模糊系统的分析、控制器设计及在复杂系统处理中的应用。近年来主持多项国家、省、市级项目。发表学术论文30余篇,被SCI、EI收录20余篇。
通讯作者:尤波.E-mail:youbo@hrbust.edu.cn.
更新日期/Last Update:
2018-10-25