[1]龚冬颖,黄敏,张洪博,等.RGBD人体行为识别中的自适应特征选择方法[J].智能系统学报,2017,12(1):1-7.[doi:10.11992/tis.201611008]
 GONG Dongying,HUANG Min,ZHANG Hongbo,et al.Adaptive feature selection method for action recognition of human body in RGBD data[J].CAAI Transactions on Intelligent Systems,2017,12(1):1-7.[doi:10.11992/tis.201611008]
点击复制

RGBD人体行为识别中的自适应特征选择方法

参考文献/References:
[1] WANG Jiang, LIU Zicheng, WU Ying, et al. Mining actionlet ensemble for action recognition with depth cameras[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA, 2012: 1290-1297.
[2] YANG Xiaodong, TIAN Yingli. Super normal vector for activity recognition using depth sequences[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 804-811.
[3] CHEN Chen, JAFARI R, KEHTARNAVAZ N. Action recognition from depth sequences using depth motion maps-based local binary patterns[C]//Proceedings of 2015 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA, 2015: 1092-1099.
[4] XIA LU, CHEN C C, AGGARWAL J K. View invariant human action recognition using histograms of 3D joints[C]//Proceedings of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, USA, 2012: 20-27.
[5] LIU Jingen, ALI S, SHAH M. Recognizing human actions using multiple features[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[6] WANG Liang, ZHOU Hang, LOW S C, et al. Action recognition via multi-feature fusion and Gaussian process classification[C]//Proceedings of 2009 Workshop on Applications of Computer Vision. Snowbird, USA, 2009: 1-6.
[7] LIU Jia, YANG Jie, ZHANG Yi, et al. Action recognition by multiple features and hyper-sphere multi-class SVM[C]//Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey, 2010: 3744-3747.
[8] BENMOKHTAR R. Robust human action recognition scheme based on high-level feature fusion[J]. Multimedia tools and applications, 2014, 69(2): 253-275.
[9] TRAN K, KAKADIARIS I A, SHAH S K. Fusion of human posture features for continuous action recognition[C]//Proceedings of the 11th European Conference on Trends and Topics in Computer Vision. Heraklion, Greece, 2010: 244-257.
[10] OREIFEJ O, LIU Zicheng. HON4D: histogram of oriented 4D normals for activity recognition from depth sequences[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 716-723.
[11] YANG Xiaodong, TIAN Yingli. Effective 3D action recognition using EigenJoints[J]. Journal of visual communication and image representation, 2014, 25(1): 2-11.
[12] RAHMANI H, MAHMOOD A, HUYNH D Q, et al. Real time action recognition using histograms of depth gradients and random decision forests[C]//Proceedings of 2014 IEEE Winter Conference on Applications of Computer Vision. Steamboat Springs, USA, 2014: 626-633.
[13] YU Gang, LIU Zicheng, YUAN Junsong. Discriminative orderlet mining for real-time recognition of human-object interaction[M]//CREMERS D, REID I, SAITO H, et al. Computer Vision—ACCV 2014. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 50-65.
[14] CHAARAOUI A A, PADILLA-LOPEZ J R, FLOREZ-REVUELTA F. Fusion of skeletal and silhouette-based features for human action recognition with RGB-D devices[C]//Proceedings of 2013 IEEE International Conference on Computer Vision Workshops. Sydney, Australia, 2013: 91-97.
[15] GAO Zan, ZHANG Hua, LIU A A, et al. Human action recognition on depth dataset[J]. Neural computing and applications, 2016, 27(7): 2047-2054.
[16] LIU Zhi, ZHANG Chenyang, TIAN Yingli. 3D-based deep convolutional neural network for action recognition with depth sequences[J]. Image and vision computing, 2016, 55(2): 93-100.
[17] LI Meng, LEUNG H, SHUM H P H. Human action recognitionvia skeletal and depth based feature fusion[C]//Proceedings of the 9th International Conference on Motion in Games. Burlingame, USA, 2016: 123-132.

备注/Memo

收稿日期:2016-11-7;改回日期:。
基金项目:国家自然科学基金项目(61572409,61571188,61202143);福建省自然科学基金项目(2013J05100);中医健康管理福建省2011协同创新中心项目.
作者简介:龚冬颖,女,1992年生,硕士研究生,主要研究方向为行为识别、机器学习;黄敏,女,1982年生,博士研究生,主要研究方向为行为识别、机器学习、目标检测和图像检索;张洪博,男,1986年生,讲师,博士,主要研究方向为人体行为识别,主持国家自然科学基金青年项目和福建省自然科学基金面上项目各1项,发表学术论文多篇,其中被SCI、EI检索20余篇。
通讯作者:李绍滋.E-mail:szlig@xmu.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com