[1]张玉玲,尹传环.依特征频率的安卓恶意软件异常检测的研究[J].智能系统学报,2018,13(2):168-173.[doi:10.11992/tis.201609016]
 ZHANG Yuling,YIN Chuanhuan.Android malware outlier detection based on feature frequency[J].CAAI Transactions on Intelligent Systems,2018,13(2):168-173.[doi:10.11992/tis.201609016]
点击复制

依特征频率的安卓恶意软件异常检测的研究

参考文献/References:
[1] 微头条. Gartner: 2016全球手机出货预计19.59亿部[EB/OL]. http://www.wtoutiao.com/p/19cnOtt.html.
[2] 中文业界资讯站. 2015年Android恶意软件样本数量超230万[EB/OL]. [2017-05-13].
[3] 杨威, 肖旭生, 李邓锋, 等. 移动应用安全解析学: 成果与挑战[J]. 信息安全学报, 2016, 1(2): 1-14.
YANG Wei, XIAO Xusheng, LI Dengfeng, et al. Security analytics for mobile apps: achievements and challenges[J]. Journal of cyber security, 2016, 1(2): 1-14.
[4] AVDⅡENKO V, KUZNETSOV K, GORLA A, et al. Mining apps for abnormal usage of sensitive data[C]//Proceedings of 37th IEEE International Conference on Software Engineering. Florence, Italy, 2015: 426-436.
[5] JUSZCZAK P. Learning to recognise: a study on one-class classification and active learning[D]. TU Delft, the Netherlands: Delft University of Technology, 2006.
[6] ZHOU W, ZHOU Y, GRACE M, et al. Fast, scalable detection of piggybacked mobile applications[C]//Proceedings of the third ACM conference on Data and application security and privacy. [s.l.], ACM, 2013: 185-196.
[7] TAX D M J, DUIN R P W. Support vector data description[J]. Machine learning, 2004, 54(1): 45-66.
[8] ZHOU Wu, ZHOU Yajin, GRACE M, et al. Fast, scalable detection of “piggybacked” mobile applications[C]//Proceedings of the Third ACM Conference on Data and Application Security and Privacy. San Antonio, Texas, USA, 2013: 185-196.
[9] GRACE M, ZHOU Yajin, ZHANG Qiang, et al. Riskranker: scalable and accurate zero-day Android malware detection[C]//Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MOBISYS). Lake District, UK, 2012: 281-294.
[10] WU Songyang, WANG Pan, LI Xun, et al. Effective detection of android malware based on the usage of data flow APIs and machine learning[J]. Information and software technology, 2016, 75: 17-25.
[11] YUAN Zhenlong, LU Yongqiang, WANG Zhaoguo, et al. Droid-Sec: deep learning in android malware detection[C]//Proceedings of the 2014 ACM Conference on SIGCOMM. Chicago, Illinois, USA, 2014: 371-372.
[12] SHEEN S, ANITHA R, NATARAJAN V. Android based malware detection using a multifeature collaborative decision fusion approach[J]. Neurocomputing, 2015, 151: 905-912.
[13] TAM K, KHAN S J, FATTORI A, et al. CopperDroid: automatic reconstruction of android malware behaviors[OL/EB]/. [2016-03-24]. https://www.researchgate.net/publication/300925104.
[14] BURGUERA L, ZURUTUZA U, NADJM-TEHRANI S. Crowdroid: behavior-based malware detection system for android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. Chicago, Illinois, USA, 2011: 15-26.
[15] TAM K, KHAN S J, FATTORI A, et al. CopperDroid: Automatic Reconstruction of Android Malware Behaviors[C]//Proceedings of Annual Network and Distributed System Security (NDSS). San Diego, United States, 2015.
[16] FARUKI P, BHANDARI S, LAXMI V, et al. DroidAnalyst: synergic app framework for static and dynamic app analysis[M]//ABIELMONA R, FALCON R, ZINCIR-HEYWOOD N, et al. Recent Advances in Computational Intelligence in Defense and Security. Cham: Springer, 2016: 519-552.
[17] TAX M J D, DUIN ROBERT P W. Support vector domain description[J]. Pattern recognition letters, 1999, 20(11/12/13): 1191-1199.
[18] HASTIE T, TIBSHIRANI R, FRIEDMAN J. Unsupervised learning[M]//HASTIE T, TIBSHIRANI R, FRIEDMAN J. The Elements of Statistical Learning. New York, USA: Springer, 2009: 485-585.
[19] CRISTIANINI N, SHAWE-TAYLOR J. 支持向量机导论[M]. 李国正,译. 北京: 电子工业出版社, 2004: 57-61.
CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. LI Guozheng, Trans. Beijing: Publishing House of Electronics Industry, 2004: 57-61.
[20] 罗隽, 丁力, 潘志松, 等. 异常检测中频率敏感的单分类算法研究[J]. 计算机研究与发展, 2007, 44(Z2): 235-239.
LUO Jun, DING Li, PAN Zhisong, et al. Research on sequence-call-frequency-based one-class algorithm in abnormal detection[J]. Journal of computer research and development, 2007, 44(Z2): 235-239.
[21] 张玉玲, 尹传环. 基于SVM的安卓恶意软件检测[J]. 山东大学学报: 工学版, 2017, 47(1):42-47.
ZHANG Yuling, YIN Chuanhuan. Android malware detection based on SVM[J]. Journal of Shandong university: engineering science, 2017, 47(1): 42-47.

备注/Memo

收稿日期:2016-09-14。
基金项目:国家自然科学基金项目(61105056).
作者简介:张玉玲,女,1990年生,硕士研究生,主要研究方向为机器学习;尹传环,男,1976年生,副教授,主要研究方向为网络安全(入侵检测)、数据挖掘、机器学习(支持向量机)。
通讯作者:尹传环.E-mail:chhyin@bjtu.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com