[1]徐莹莹,邹丽,黄志鑫,等.基于TOPSIS的语言真值直觉模糊多属性决策[J].智能系统学报,2017,12(4):504-510.[doi:10.11992/tis.201608008]
XU Yingying,ZOU Li,HUANG Zhixin,et al.Linguistic truth-valued intuitionistic fuzzy multi-attribute decision making based on TOPSIS[J].CAAI Transactions on Intelligent Systems,2017,12(4):504-510.[doi:10.11992/tis.201608008]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第4期
页码:
504-510
栏目:
学术论文—自然语言处理与理解
出版日期:
2017-08-25
- Title:
-
Linguistic truth-valued intuitionistic fuzzy multi-attribute decision making based on TOPSIS
- 作者:
-
徐莹莹1, 邹丽1, 黄志鑫2, 潘畅1
-
1. 辽宁师范大学 计算机与信息技术学院, 辽宁 大连 116081;
2. 辽宁师范大学 数学学院, 辽宁 大连 116081
- Author(s):
-
XU Yingying1, ZOU Li1, HUANG Zhixin2, PAN Chang1
-
1. School of Computer and Information Technology, Liaoning Normal University, Dalian 116081, China;
2. School of Mathematics, Liaoning Normal University, Dalian 116081, China
-
- 关键词:
-
TOPSIS; 语言真值直觉模糊对; 归一化距离; 理想点; 多属性决策
- Keywords:
-
TOPSIS; linguistic truth-valued intuitionistic fuzzy pairs; normalized distance; ideal point; multi-attribute decision making
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.201608008
- 摘要:
-
针对具有模糊语言值信息的多属性决策问题,结合传统的TOPSIS方法,提出了基于TOPSIS的语言真值直觉模糊多属性决策方法。在语言真值直觉模糊代数的基础上,用语言真值直觉模糊对来表达既有可比的又有不可比的模糊语言值信息,给出了语言真值直觉模糊对之间的归一化距离算法,并讨论了其相关性质。提出了语言真值直觉模糊正、负理想点,通过计算各方案属性值与正、负理想点之间的距离,得到各方案与理想点之间的相对贴近度,并根据相对贴近度的排序结果得到最优方案。实例说明该决策方法的合理性和有效性。
- Abstract:
-
For multi-attribute decision making problems with fuzzy linguistic-valued information, in this paper, we propose a linguistic truth-valued intuitionistic fuzzy multi-attribute decision making approach based on the technique for order performance by similarity to ideal solution (TOPSIS), in combination with the traditional TOPSIS approach. On the basis of linguistic truth-valued intuitionistic fuzzy algebra, in our approach, we used linguistic truth-valued intuitionistic fuzzy pairs to express fuzzy linguistic-valued information that is both comparable and incomparable. We define the normalized distance algorithm for linguistic truth-valued intuitionistic fuzzy pairs and discuss its related properties. We propose linguistic truth-valued intuitionistic fuzzy positive and negative ideal points by calculating the distances between the attribute values of every scheme with positive and negative ideal points to obtain their relative degree of closeness. From the ranking result of the relative degree of closeness, we can determine the best scheme. We give an example to illustrate the reasonability and effectiveness of our proposed decision-making approach.
备注/Memo
收稿日期:2016-08-26。
基金项目:国家自然科学基金项目(61372187,61173100);辽宁省自然科学基金项目(2015020059).
作者简介:徐莹莹,女,1991年生,硕士研究生,主要研究方向为多值逻辑与不确定性推理、智能信息处理;邹丽,女,1971年生,副教授,博士,主要研究方向为多值逻辑与不确定性推理、智能信息处理,发表学术论文70余篇;黄志鑫,男,1990年生,硕士研究生,主要研究方向为多值逻辑与不确定性推理、智能信息处理。
通讯作者:徐莹莹,E-mail:xuyingyingcn@126.com.
更新日期/Last Update:
2017-08-25