[1]乔俊飞,李凡军,杨翠丽.随机权神经网络研究现状与展望[J].智能系统学报,2016,11(6):758-767.[doi:10.11992/tis.201612015]
QIAO Junfei,LI Fanjun,YANG Cuili.Review and prospect on neural networks with random weights[J].CAAI Transactions on Intelligent Systems,2016,11(6):758-767.[doi:10.11992/tis.201612015]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第6期
页码:
758-767
栏目:
综述
出版日期:
2017-01-20
- Title:
-
Review and prospect on neural networks with random weights
- 作者:
-
乔俊飞1,3, 李凡军2, 杨翠丽1,3
-
1. 北京工业大学 信息学部, 北京 100124;
2. 济南大学 数学科学学院, 山东 济南 250022;
3. 计算智能与智能系统北京市重点实验室, 北京 100124
- Author(s):
-
QIAO Junfei1,3, LI Fanjun2, YANG Cuili1,3
-
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2. School of Mathematical Science, University of Jinan, Jinan 250022, China;
3. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
-
- 关键词:
-
随机权神经网络; 前馈神经网络; 递归神经网络; 级联神经网络; 随机学习算法
- Keywords:
-
neural network with random weights; feedforward neural network; recurrent neural network; cascade neural network; randomized learning algorithm
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.201612015
- 摘要:
-
神经网络随机学习克服了传统梯度类算法所固有的收敛速度慢及局部极小问题,最近已成为神经网络领域的研究热点之一。基于随机学习的思想,人们设计了不同结构的随机权神经网络模型。本文旨在回顾总结随机权神经网络的研究现状基础上,给出其发展趋势。首先,提出随机权神经网络简化模型,并基于简化模型给出神经网络随机学习算法;其次,回顾总结随机权神经网络研究现状,基于简化模型分析不同结构随机权神经网络的性能及随机权初始化方法;最后,给出随机权神经网络今后的发展趋势。
- Abstract:
-
A randomized learning algorithm in a neural network, which can overcome the difficulty of slow convergence and local minimum inherently in the traditional gradient-based learning algorithms, has recently become a hot topic in the field of neural networks. Some neural networks with random weights using randomized learning algorithms have been proposed. The aim of this paper summarizes the current research on neural networks with random weights and provides some views about its development trends. First, a simplified model of a neural network with random weights was proposed, and the randomized learning algorithm was summarized, based on the simplified model. Then, a review on neural networks with random weights was given, and the performance of several different neural networks with random weights was analyzed, based on the simplified model. Finally, several views on neural networks with random weights are presented.
备注/Memo
收稿日期:2016-12-12。
基金项目:国家自然科学基金项目(61533002,61603012);北京市自然科学基金项目(Z141100001414005);北京市教委基金项目(km201410005001,KZ201410005002).
作者简介:乔俊飞,男,1968年生,教授,博士生导师,中国人工智能学会科普工作委员会主任,主要研究方向为智能信息处理、智能控制理论与应用。获教育部科技进步奖一等奖和北京市科学技术奖三等奖各1项。发表学术论文100余篇,其中被SCI收录20余篇,EI收录60余篇,获得发明专利20余项.;李凡军,男,1977年生,副教授,主要研究方向为智能系统与智能信息处理。发表学术论文10余篇,其中被SCI检索3篇,EI检索6篇;杨翠丽,女,1986年生,讲师,,主要研究方向为进化算法和智能信息处理。发表学术论文10余篇,其中被SCI检索7篇,EI检索12篇。
通讯作者:乔俊飞.E-mail:junfeiq@bjut.edu.cn.
更新日期/Last Update:
1900-01-01