[1]张金艺,梁滨,唐笛恺,等.粗匹配和局部尺度压缩搜索下的快速ICP-SLAM[J].智能系统学报,2017,12(3):413-421.[doi:10.11992/tis.201605029]
ZHANG Jinyi,LIANG Bin,TANG Dikai,et al.Fast ICP-SLAM with rough alignment and local scale-compressed searching[J].CAAI Transactions on Intelligent Systems,2017,12(3):413-421.[doi:10.11992/tis.201605029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第3期
页码:
413-421
栏目:
学术论文—智能系统
出版日期:
2017-06-25
- Title:
-
Fast ICP-SLAM with rough alignment and local scale-compressed searching
- 作者:
-
张金艺1,2, 梁滨1, 唐笛恺1, 姚维强2, 鲍深2
-
1. 上海大学 通信与信息工程学院, 上海 200010;
2. 上海大学 微电子研究与开发中心, 上海 200010
- Author(s):
-
ZHANG Jinyi1,2, LIANG Bin1, TANG Dikai1, YAO Weiqiang2, BAO Shen2
-
1. School of Communication and Information Engineering, Shanghai University, Shanghai 200010, China;
2. Microelectronic Research and Development Center, Shanghai University, Shanghai 200010, China
-
- 关键词:
-
ICP-SLAM; 粗匹配; 初始姿态矩阵; 局部搜索; 动态阈值; 实时性; 点云; 迭代
- Keywords:
-
ICP-SLAM; rough alignment; initial pose matrix; local searching; dynamic threshold; real-time performance; cloud point; iteration
- 分类号:
-
TP11
- DOI:
-
10.11992/tis.201605029
- 摘要:
-
ICP-SLAM在自主机器人和无人驾驶领域得到了极大的关注,但传统ICP-SLAM缺少当前帧和全局地图的相对位置关系,因此本文ICP算法必须经过大量的迭代之后才能达到收敛条件,这导致传统ICP-SLAM实时性很差。并且在每一次的迭代过程中,必须通过全局搜索才能完成匹配点搜索,这进一步降低了传统ICP-SLAM的实时性。为此,提出了一种快速ICP-SLAM方案。首先,通过MEMS磁力计和全局地标计算出初始位姿矩阵,通过该初始位姿矩阵实现当前帧和全局地图之间粗匹配,进而减少达到收敛条件的迭代次数。其次,在每次迭代过程中,将采用局部尺度压缩搜索完成匹配点搜索,从而减小ICP-SLAM的计算开销,提高ICP-SLAM实时性;同时,每次迭代完成之后,还将通过动态阈值缩小搜索范围,达到加快匹配点搜索的速度,进而提高ICP-SLAM实时性。实验结果表明,和传统ICP-SLAM相比,在理想室内静止场景下,快速ICP-SLAM的迭代次数最高减小了92.34%,ICP算法运行时间最高降低了98.86%。除此之外,ICP-SLAM的整体负载也被保持在可控范围内,ICP-SLAM的整体性能得到很大的提升。
- Abstract:
-
ICP-SLAM has received much attention in the field of autonomous robots and unmanned cars. However, two deficiencies in traditional ICP-SLAM usually result in poor real-time performance. The first is the fact that the relative position between the current scan frame and the global map is not previously known. As a result, the ICP algorithm takes a large number of iterations to reach convergence. The second is that the establishment of correspondence is carried out by global searching and this requires an enormous amount of computational time. To overcome these problems, a fast ICP-SLAM is proposed. To decrease the number of iterations a rough alignment, based on an initial pose matrix, is proposed. In detail, the initial pose matrix is computed using a MEMS magnetometer and global landmarks. Then, a rough alignment is applied between the current scan frame and the global map at the beginning of the ICP algorithm with an initial pose matrix. To accelerate the establishment of correspondence, local scale-compressed searching with a dynamic threshold is proposed where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM, under ideal stable conditions, the best experimental results show amount of iteration for ICP algorithm to reach convergence reduces 92.34% and ICP algorithm runtime reduces 98.86%. In addition, computational cost is kept at a stable level due to the elimination of accumulated computational consumption. Moreover, great improvement is observed in the quality and robustness of SLAM
备注/Memo
收稿日期:2016-05-27。
基金项目:国家“863”计划基金项目(2013AA03A1121,2013AA03A1122);上海市教委重点学科资助项目(J50104).
作者简介:张金艺,男,1965年生,研究员,主要研究方向为通信类SoC设计与室内无线定位技术。发表学术论文40余篇,近3年授权与申请专利30项;梁滨,男,1991年生,硕士研究生,主要研究方向为基于激光雷达的室内SLAM;唐笛恺,男,1991年生,硕士研究生,主要研究方向为基于激光雷达的室内SLAM。
通讯作者:梁滨.E-mail:zhangjinyi@staff.shu.edu.cn.
更新日期/Last Update:
2017-06-25