[1]乔丽娟,徐章艳,谢小军,等.基于知识粒度的不完备决策表的属性约简算法[J].智能系统学报编辑部,2016,11(1):129-135.[doi:10.11992/tis.201506029]
QIAO Lijuan,XU Zhangyan,XIE Xiaojun,et al.Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation[J].CAAI Transactions on Intelligent Systems,2016,11(1):129-135.[doi:10.11992/tis.201506029]
点击复制
《智能系统学报》编辑部[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第1期
页码:
129-135
栏目:
学术论文—知识工程
出版日期:
2016-02-25
- Title:
-
Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation
- 作者:
-
乔丽娟1,2, 徐章艳1,2, 谢小军1,2, 朱金虎1,2, 陈晓飞2, 李娟2
-
1. 广西师范大学广西多源信息挖掘与安全重点实验室, 广西桂林 541004;
2. 广西师范大学计算机科学与信息工程学院, 广西桂林 541004
- Author(s):
-
QIAO Lijuan1,2, XU Zhangyan1,2, XIE Xiaojun1,2, ZHU Jinhu1,2, CHEN Xiaofei2, LI Juan2
-
1. Guangxi Key Laboratory of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China;
2. College of Computer Science and Information Technology, Guangxi Normal University, Guilin 541004, China
-
- 关键词:
-
属性约简; 知识粒度; 不完全决策表; 条件属性频率; 差别矩阵; 启发信息
- Keywords:
-
attribute reduction; knowledge granularity; incomplete decision table; condition attribute frequency; discernibility matrix; heuristic information
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201506029
- 摘要:
-
知识粒度是属性约简的有效方法,但对于大型的决策表,计算知识粒度过于费时,算法效率不高。在引入粒度差别矩阵后,设计了一个计算粒度差别矩阵中条件属性出现频率的函数,有效地降低粒度差别矩阵的存储空间,根据此函数设计了一个高效属性约简算法。新算法使得时间复杂度与空间复杂度都降为O(K|C||U|)(其中K=max{|Tc(xi)|, xi∈U}和O(|U|)。最后通过实例仿真说明了此算法的高效性和可行性。
- Abstract:
-
The use of knowledge granularity is an effective attribute reduction approach. But for a large decision table, computing knowledge granularity is so time-consuming that the algorithm is not efficient for practical use.After the introduction of the discernibility matrix of granularity, a function was designed for calculating the occurrence frequency of condition attributes in the matrix. In this paper, we design an efficient attribute reduction algorithm based on the granularity discernibility matrix. The new algorithm reduces the time and space complexities to O(K|C||U|) (K=max{|Tc(xi)|, xi∈U}) and O(|U|), respectively. The results from our simulation example verify that the proposed algorithm is feasible and highly efficient.
备注/Memo
收稿日期:2015-06-16;改回日期:。
基金项目:国家自然科学基金资助项目(61262004,61363034,60963008);广西自然科学基金资助项目(2011GXNSFA018163);大学生创新资助项目(201410602099).
作者简介:乔丽娟,女,1988年生,硕士研究生,主要研究方向为数据挖掘及粗糙集理论;徐章艳,男,1972年生,教授,博士,主要研究方向为数据挖掘、模糊集、粗糙集理论。主持国家自然科学基金项目1项,参与国家自然科学基金项目2项,主持省部级科研项目1项;厅局级项目2项;主持校级项目2项。发表学术论文被SCI检索3篇,被EI检索5篇;谢小军,男,1990年生,硕士研究生,主要研究方向为数据挖掘及粗糙集理论。
通讯作者:乔丽娟.E-mail:347671379@qq.com.
更新日期/Last Update:
1900-01-01