[1]姚霖,刘轶,李鑫鑫,等.词边界字向量的中文命名实体识别[J].智能系统学报编辑部,2016,11(1):37-42.[doi:10.11992/tis.201507065]
YAO Lin,LIU Yi,LI Xinxin,et al.Chinese named entity recognition via word boundarybased character embedding[J].CAAI Transactions on Intelligent Systems,2016,11(1):37-42.[doi:10.11992/tis.201507065]
点击复制
《智能系统学报》编辑部[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第1期
页码:
37-42
栏目:
学术论文—自然语言处理与理解
出版日期:
2016-02-25
- Title:
-
Chinese named entity recognition via word boundarybased character embedding
- 作者:
-
姚霖1,2,3, 刘轶1, 李鑫鑫4, 刘宏2
-
1. 深港产学研基地, 广东深圳 518057;
2. 北京大学信息科学技术学院, 北京 100871;
3. 哈尔滨工业大学软件学院, 黑龙江哈尔滨 150001;
4. 哈尔滨工业大学深圳研究生院计算机科学与技术学院, 广东深圳 518055
- Author(s):
-
YAO Lin1,2,3, LIU Yi1, LI Xinxin4, LIU Hong2
-
1. Shenzhen High-Tech Industrial Park, Shenzhen 518057, China;
2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;
3. School of Software, Harbin Institute of Technology, Harbin 150001, China;
4. School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
-
- 关键词:
-
机器学习; 中文命名体识别; 深度神经网络; 特征向量; 特征提取
- Keywords:
-
machine learning; Chinese named entity recognition; deep neutral networks; feature vector; feature extraction
- 分类号:
-
TP391.1
- DOI:
-
10.11992/tis.201507065
- 摘要:
-
常见的基于机器学习的中文命名实体识别系统往往使用大量人工提取的特征,但特征提取费时费力,是一件十分繁琐的工作。为了减少中文命名实体识别对特征提取的依赖,构建了基于词边界字向量的中文命名实体识别系统。该方法利用神经元网络从大量未标注数据中,自动抽取出蕴含其中的特征信息,生成字特征向量。同时考虑到汉字不是中文语义的最基本单位,单纯的字向量会由于一字多义造成语义的混淆,因此根据同一个字在词中处于不同位置大多含义不同的特点,将单个字在词语中所处的位置信息加入到字特征向量中,形成词边界字向量,将其用于深度神经网络模型训练之中。在Sighan Bakeoff-3(2006)语料中取得了F1 89.18%的效果,接近当前国际先进水平,说明了该系统不仅摆脱了对特征提取的依赖,也减少了汉字一字多义产生的语义混淆。
- Abstract:
-
Most Chinese named entity recognition systems based on machine learning are realized by applying a large amount of manual extracted features. Feature extraction is time-consuming and laborious. In order to remove the dependence on feature extraction, this paper presents a Chinese named entity recognition system via word boundary based character embedding. The method can automatically extract the feature information from a large number of unlabeled data and generate the word feature vector, which will be used in the training of neural network. Since the Chinese characters are not the most basic unit of the Chinese semantics, the simple word vector will be cause the semantics ambiguity problem. According to the same character on different position of the word might have different meanings, this paper proposes a character vector method with word boundary information, constructs a depth neural network system for the Chinese named entity recognition and achieves F1 89.18% on Sighan Bakeoff-3 2006 MSRA corpus. The result is closed to the state-of-the-art performance and shows that the system can avoid relying on feature extraction and reduce the character ambiguity.
备注/Memo
收稿日期:2015-08-13;改回日期:。
基金项目:原创项目研发与非遗产业化资助项目(YC2015057).
作者简介:姚霖,1975年生,高级工程师,主要研究方向为生物信息、自然语言处理。主持和参与多项科研项目。发表学术论文20余篇;刘轶,1972年生,研究员,主要研究方向为语音识别、多媒体信息处理、嵌入式软件及系统,主持和参与国家自然科学基金等项目几十项。发表学术论文50余篇,其中被SCI检索6篇,EI检索22篇;刘宏,1967年生,教授,博士生导师,主要研究方向为软硬件协同设计、计算机视觉与智能机器人、图像处理与模式识别。发表学术论文50余篇。
通讯作者:姚霖.E-mail:1250047487@qq.com.
更新日期/Last Update:
1900-01-01